Design of a 0.2V 2.08nW 10-bit 1kS/s High Energy Efficiency SAR ADC with Dummy Capacitor Splitting Technique for Biomedical Applications

IF 2.9 4区 综合性期刊 Q1 Multidisciplinary
Zahra Mehrabi Moghadam, Mohammad Reza Salehi, Ebrahim Abiri
{"title":"Design of a 0.2V 2.08nW 10-bit 1kS/s High Energy Efficiency SAR ADC with Dummy Capacitor Splitting Technique for Biomedical Applications","authors":"Zahra Mehrabi Moghadam, Mohammad Reza Salehi, Ebrahim Abiri","doi":"10.1007/s13369-024-09459-8","DOIUrl":null,"url":null,"abstract":"<p>This paper presents an ultra-low-voltage 10-bit successive approximation-register analog-to-digital converter (SAR ADC) based on the binary search algorithm for biomedical applications. An energy-efficient DAC switching scheme for a fully differential SAR ADC is proposed, which achieves a 99.8% reduction in DAC switching energy compared to conventional SAR ADC. In this design, by using a dummy capacitor split technique, an attempt has been made to reduce the capacitor of the most significant bit, resulting in a 92.87% reduction in the total number of capacitors compared to conventional design. In the proposed structure, the common-mode voltage of the comparator is approximately constant. The maximum voltage variation in the proposed switching scheme is Vref/2. Additionally, power consumption has been reduced by implementing the power gating technique in the control logic part. The proposed converter with a sampling frequency of 1 kS/s and a supply voltage of 0.2 V has been designed and simulated in TSMC 65nm CMOS technology. Both analytical calculations and simulation results confirm the effectiveness of the proposed switching scheme. Ultimately, the proposed scheme achieves a power consumption of 2.08 nW and a Figure of Merit (FoM) of 5.39 fJ/conversion-step. In comparison with the state-of-the-art, the proposed design has demonstrated excellent performance in achieving optimal power.</p>","PeriodicalId":8109,"journal":{"name":"Arabian Journal for Science and Engineering","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arabian Journal for Science and Engineering","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1007/s13369-024-09459-8","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an ultra-low-voltage 10-bit successive approximation-register analog-to-digital converter (SAR ADC) based on the binary search algorithm for biomedical applications. An energy-efficient DAC switching scheme for a fully differential SAR ADC is proposed, which achieves a 99.8% reduction in DAC switching energy compared to conventional SAR ADC. In this design, by using a dummy capacitor split technique, an attempt has been made to reduce the capacitor of the most significant bit, resulting in a 92.87% reduction in the total number of capacitors compared to conventional design. In the proposed structure, the common-mode voltage of the comparator is approximately constant. The maximum voltage variation in the proposed switching scheme is Vref/2. Additionally, power consumption has been reduced by implementing the power gating technique in the control logic part. The proposed converter with a sampling frequency of 1 kS/s and a supply voltage of 0.2 V has been designed and simulated in TSMC 65nm CMOS technology. Both analytical calculations and simulation results confirm the effectiveness of the proposed switching scheme. Ultimately, the proposed scheme achieves a power consumption of 2.08 nW and a Figure of Merit (FoM) of 5.39 fJ/conversion-step. In comparison with the state-of-the-art, the proposed design has demonstrated excellent performance in achieving optimal power.

Abstract Image

利用虚拟电容分流技术设计用于生物医学应用的 0.2V 2.08nW 10 位 1kS/s 高能效 SAR ADC
本文介绍了一种基于二进制搜索算法的超低电压 10 位逐次逼近寄存器模数转换器(SAR ADC),适用于生物医学应用。针对全差分 SAR ADC 提出了一种高能效 DAC 开关方案,与传统 SAR ADC 相比,DAC 开关能量降低了 99.8%。在该设计中,通过使用假电容拆分技术,尝试减少最显著位的电容,与传统设计相比,电容总数减少了 92.87%。在拟议的结构中,比较器的共模电压近似恒定。此外,通过在控制逻辑部分采用功率门控技术,还降低了功耗。所提出的转换器采样频率为 1 kS/s,电源电压为 0.2 V,采用 TSMC 65nm CMOS 技术进行了设计和仿真。分析计算和仿真结果都证实了拟议开关方案的有效性。最终,所提出的方案实现了 2.08 nW 的功耗和 5.39 fJ/ 转换级的优越性图 (FoM)。与最先进的技术相比,所提出的设计在实现最佳功率方面表现出了卓越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Arabian Journal for Science and Engineering
Arabian Journal for Science and Engineering 综合性期刊-综合性期刊
CiteScore
5.20
自引率
3.40%
发文量
0
审稿时长
4.3 months
期刊介绍: King Fahd University of Petroleum & Minerals (KFUPM) partnered with Springer to publish the Arabian Journal for Science and Engineering (AJSE). AJSE, which has been published by KFUPM since 1975, is a recognized national, regional and international journal that provides a great opportunity for the dissemination of research advances from the Kingdom of Saudi Arabia, MENA and the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信