Optimizing of Novel Magnetic Field-Assisted Electrical Discharge Turning Parameters for Machining EN24 Steel Alloy Using Response Surface Methodology and MCDM-Based CRITIC–TOPSIS Method
{"title":"Optimizing of Novel Magnetic Field-Assisted Electrical Discharge Turning Parameters for Machining EN24 Steel Alloy Using Response Surface Methodology and MCDM-Based CRITIC–TOPSIS Method","authors":"Roopak Varshney, Param Singh","doi":"10.1007/s13369-024-09537-x","DOIUrl":null,"url":null,"abstract":"<p>This study employs a multi-criteria decision-making (MCDM) technique to identify the optimal parameters for the electrical discharge turning (EDT) process used to machine cylindrical EN24 steel alloy. EDT, a significant configuration of EDM, offers a valuable approach for machining cylindrical workpieces. A face-centred central composite design (FCCCD) is employed to establish the experimental design. The CRITIC–TOPSIS method is subsequently implemented to optimize the input parameters: gap current (Ig), pulse on time (Ton), rotational speed (<i>N</i>), and magnetic field assistance (<i>B</i>). Each parameter is investigated at three distinct levels. The study focuses on four response variables: material removal rate (MRR), tool wear rate (TWR), overcut (OC), and surface roughness (<i>R</i><sub>a</sub>). Analysis of variance (ANOVA) is conducted to assess the influence of each input parameter on the observed responses. Criteria importance through inter-criteria correlation (CRITIC) is employed to assign weights to each response, followed by applying the technique for order of preference by similarity to ideal solution (TOPSIS) to identify the ideal machining parameters. The results indicate that run number 16 (Ig: 16A, Ton: 60 µs, <i>N</i>: 1400 RPM, and <i>B</i>: 0.30 T) represents the optimal configuration. Scanning electron microscopy (SEM) analysis further corroborates this finding, confirming superior surface quality compared to other experimental runs.</p>","PeriodicalId":8109,"journal":{"name":"Arabian Journal for Science and Engineering","volume":"24 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arabian Journal for Science and Engineering","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1007/s13369-024-09537-x","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0
Abstract
This study employs a multi-criteria decision-making (MCDM) technique to identify the optimal parameters for the electrical discharge turning (EDT) process used to machine cylindrical EN24 steel alloy. EDT, a significant configuration of EDM, offers a valuable approach for machining cylindrical workpieces. A face-centred central composite design (FCCCD) is employed to establish the experimental design. The CRITIC–TOPSIS method is subsequently implemented to optimize the input parameters: gap current (Ig), pulse on time (Ton), rotational speed (N), and magnetic field assistance (B). Each parameter is investigated at three distinct levels. The study focuses on four response variables: material removal rate (MRR), tool wear rate (TWR), overcut (OC), and surface roughness (Ra). Analysis of variance (ANOVA) is conducted to assess the influence of each input parameter on the observed responses. Criteria importance through inter-criteria correlation (CRITIC) is employed to assign weights to each response, followed by applying the technique for order of preference by similarity to ideal solution (TOPSIS) to identify the ideal machining parameters. The results indicate that run number 16 (Ig: 16A, Ton: 60 µs, N: 1400 RPM, and B: 0.30 T) represents the optimal configuration. Scanning electron microscopy (SEM) analysis further corroborates this finding, confirming superior surface quality compared to other experimental runs.
期刊介绍:
King Fahd University of Petroleum & Minerals (KFUPM) partnered with Springer to publish the Arabian Journal for Science and Engineering (AJSE).
AJSE, which has been published by KFUPM since 1975, is a recognized national, regional and international journal that provides a great opportunity for the dissemination of research advances from the Kingdom of Saudi Arabia, MENA and the world.