Stable vector bundles on fibered threefolds over a surface

IF 0.5 4区 数学 Q3 MATHEMATICS
Tohru Nakashima
{"title":"Stable vector bundles on fibered threefolds over a surface","authors":"Tohru Nakashima","doi":"10.1007/s10711-024-00946-8","DOIUrl":null,"url":null,"abstract":"<p>Let <i>X</i> be a smooth projective threefold and let <i>H</i> be an ample line bundle on <i>X</i>. We investigate the existence of vector bundles on <i>X</i> which are <span>\\(\\mu \\)</span>-stable with respect to an ample divisor <span>\\(H_{\\epsilon }=H+\\epsilon D\\)</span> for sufficiiently small <span>\\(\\epsilon &gt;0\\)</span> where <i>D</i> is a divisor with <span>\\(D\\cdot H^2=0\\)</span>. In particular, when <i>X</i> is a Fano conic bundle over a rational surface, we show that there exists a family <span>\\(\\{E_n\\}\\)</span> of <span>\\(H_{\\epsilon }\\)</span>-stable vector bundles with <span>\\(c_1(E_n)=0\\)</span> and <span>\\(c_2(E_n)\\cdot H\\)</span> becomes arbitrarily large as <i>n</i> goes to infinity.</p>","PeriodicalId":55103,"journal":{"name":"Geometriae Dedicata","volume":"111 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometriae Dedicata","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10711-024-00946-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let X be a smooth projective threefold and let H be an ample line bundle on X. We investigate the existence of vector bundles on X which are \(\mu \)-stable with respect to an ample divisor \(H_{\epsilon }=H+\epsilon D\) for sufficiiently small \(\epsilon >0\) where D is a divisor with \(D\cdot H^2=0\). In particular, when X is a Fano conic bundle over a rational surface, we show that there exists a family \(\{E_n\}\) of \(H_{\epsilon }\)-stable vector bundles with \(c_1(E_n)=0\) and \(c_2(E_n)\cdot H\) becomes arbitrarily large as n goes to infinity.

曲面上纤维三折上的稳定向量束
让 X 是光滑的投影三褶,让 H 是 X 上的充裕线束。我们研究了 X 上向量束的存在性,这些向量束在足够小的\(\epsilon >0\)(其中 D 是具有\(D\cdot H^2=0\) 的充裕分部时,相对于充裕分部\(H_{\epsilon }=H+\epsilon D\) 是稳定的。)特别是,当X是一个有理面上的法诺圆锥束时,我们证明存在一个\(\{E_n\}\)\(H_{epsilon }\)-stable vector bundles的族,其\(c_1(E_n)=0\)和\(c_2(E_n)\cdot H\) 随着n的无穷大而变得任意大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geometriae Dedicata
Geometriae Dedicata 数学-数学
CiteScore
0.90
自引率
0.00%
发文量
78
审稿时长
4-8 weeks
期刊介绍: Geometriae Dedicata concentrates on geometry and its relationship to topology, group theory and the theory of dynamical systems. Geometriae Dedicata aims to be a vehicle for excellent publications in geometry and related areas. Features of the journal will include: A fast turn-around time for articles. Special issues centered on specific topics. All submitted papers should include some explanation of the context of the main results. Geometriae Dedicata was founded in 1972 on the initiative of Hans Freudenthal in Utrecht, the Netherlands, who viewed geometry as a method rather than as a field. The present Board of Editors tries to continue in this spirit. The steady growth of the journal since its foundation is witness to the validity of the founder''s vision and to the success of the Editors'' mission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信