Accuracy improvement of resonant sensor by an additional electrode in the measurement of liquid density and viscosity

IF 1.6 4区 工程技术 Q3 INSTRUMENTS & INSTRUMENTATION
Nam Chol An, Hyon Jang, Chung Hun Kim, Un Hyang Ri, Hyon Chol Kim
{"title":"Accuracy improvement of resonant sensor by an additional electrode in the measurement of liquid density and viscosity","authors":"Nam Chol An, Hyon Jang, Chung Hun Kim, Un Hyang Ri, Hyon Chol Kim","doi":"10.1108/sr-04-2024-0289","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>In the measurement of liquid density and viscosity, the change of resonance parameters due to the parasitic parallel capacitance of resonator affects the measurement accuracy. To improve the accuracy, a method was proposed to compensate the parasitic parallel capacitance of resonator by adding an electrode.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>The new electrode (compensation electrode) was added into resonant sensor to make compensation capacitance. The closer the compensation capacitance was to the parasitic parallel capacitance, the better compensation was. The structural parameters of resonant sensor with the compensation electrode were determined by the simulation and experiment.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The effect of this method was examined by the experiment. The relative errors of density and viscosity were less than 0.15, 0.5 % and standard deviations were less than 0.0004 g/cm<sup>3</sup> and 0.005 mPas, respectively.</p><!--/ Abstract__block -->\n<h3>Practical implications</h3>\n<p>The experimental results show that this method is valuable for the parasitic parallel capacitance compensation of immersed resonant sensor.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>This paper has not been published in other journals.</p><!--/ Abstract__block -->","PeriodicalId":49540,"journal":{"name":"Sensor Review","volume":"25 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensor Review","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/sr-04-2024-0289","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose

In the measurement of liquid density and viscosity, the change of resonance parameters due to the parasitic parallel capacitance of resonator affects the measurement accuracy. To improve the accuracy, a method was proposed to compensate the parasitic parallel capacitance of resonator by adding an electrode.

Design/methodology/approach

The new electrode (compensation electrode) was added into resonant sensor to make compensation capacitance. The closer the compensation capacitance was to the parasitic parallel capacitance, the better compensation was. The structural parameters of resonant sensor with the compensation electrode were determined by the simulation and experiment.

Findings

The effect of this method was examined by the experiment. The relative errors of density and viscosity were less than 0.15, 0.5 % and standard deviations were less than 0.0004 g/cm3 and 0.005 mPas, respectively.

Practical implications

The experimental results show that this method is valuable for the parasitic parallel capacitance compensation of immersed resonant sensor.

Originality/value

This paper has not been published in other journals.

在测量液体密度和粘度时通过附加电极提高谐振传感器的精度
目的 在测量液体密度和粘度时,谐振器的寄生并联电容会导致谐振参数发生变化,从而影响测量精度。为了提高测量精度,提出了一种通过添加电极来补偿谐振器寄生并联电容的方法。补偿电容越接近寄生并联电容,补偿效果越好。通过模拟和实验确定了带有补偿电极的谐振传感器的结构参数。实验结果表明,这种方法对浸入式谐振传感器的寄生并联电容补偿很有价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sensor Review
Sensor Review 工程技术-仪器仪表
CiteScore
3.40
自引率
6.20%
发文量
50
审稿时长
3.7 months
期刊介绍: Sensor Review publishes peer reviewed state-of-the-art articles and specially commissioned technology reviews. Each issue of this multidisciplinary journal includes high quality original content covering all aspects of sensors and their applications, and reflecting the most interesting and strategically important research and development activities from around the world. Because of this, readers can stay at the very forefront of high technology sensor developments. Emphasis is placed on detailed independent regular and review articles identifying the full range of sensors currently available for specific applications, as well as highlighting those areas of technology showing great potential for the future. The journal encourages authors to consider the practical and social implications of their articles. All articles undergo a rigorous double-blind peer review process which involves an initial assessment of suitability of an article for the journal followed by sending it to, at least two reviewers in the field if deemed suitable. Sensor Review’s coverage includes, but is not restricted to: Mechanical sensors – position, displacement, proximity, velocity, acceleration, vibration, force, torque, pressure, and flow sensors Electric and magnetic sensors – resistance, inductive, capacitive, piezoelectric, eddy-current, electromagnetic, photoelectric, and thermoelectric sensors Temperature sensors, infrared sensors, humidity sensors Optical, electro-optical and fibre-optic sensors and systems, photonic sensors Biosensors, wearable and implantable sensors and systems, immunosensors Gas and chemical sensors and systems, polymer sensors Acoustic and ultrasonic sensors Haptic sensors and devices Smart and intelligent sensors and systems Nanosensors, NEMS, MEMS, and BioMEMS Quantum sensors Sensor systems: sensor data fusion, signals, processing and interfacing, signal conditioning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信