Signal‐Amplifying Biohybrid Material Circuits for CRISPR/Cas‐Based Single‐Stranded RNA Detection

Hasti Mohsenin, Rosanne Schmachtenberg, Svenja Kemmer, Hanna J. Wagner, Midori Johnston, Sibylle Madlener, Can Dincer, Jens Timmer, Wilfried Weber
{"title":"Signal‐Amplifying Biohybrid Material Circuits for CRISPR/Cas‐Based Single‐Stranded RNA Detection","authors":"Hasti Mohsenin, Rosanne Schmachtenberg, Svenja Kemmer, Hanna J. Wagner, Midori Johnston, Sibylle Madlener, Can Dincer, Jens Timmer, Wilfried Weber","doi":"10.1002/admt.202400981","DOIUrl":null,"url":null,"abstract":"The functional integration of biological switches with synthetic building blocks enables the design of modular, stimulus‐responsive biohybrid materials. By connecting the individual modules via diffusible signals, information‐processing circuits can be designed. Such systems are, however, mostly limited to respond to either small molecules, proteins, or optical input thus limiting the sensing and application scope of the material circuits. Here, a highly modular biohybrid material is design based on CRISPR/Cas13a to translate arbitrary single‐stranded RNAs into a biomolecular material response. This system exemplified by the development of a cascade of communicating materials that can detect the tumor biomarker microRNA miR19b in patient samples or sequences specific for SARS‐CoV. Specificity of the system is further demonstrated by discriminating between input miRNA sequences with single‐nucleotide differences. To quantitatively understand information processing in the materials cascade, a mathematical model is developed. The model is used to guide systems design for enhancing signal amplification functionality of the overall materials system. The newly designed modular materials can be used to interface desired RNA input with stimulus‐responsive and information‐processing materials for building point‐of‐care suitable sensors as well as multi‐input diagnostic systems with integrated data processing and interpretation.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials & Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/admt.202400981","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The functional integration of biological switches with synthetic building blocks enables the design of modular, stimulus‐responsive biohybrid materials. By connecting the individual modules via diffusible signals, information‐processing circuits can be designed. Such systems are, however, mostly limited to respond to either small molecules, proteins, or optical input thus limiting the sensing and application scope of the material circuits. Here, a highly modular biohybrid material is design based on CRISPR/Cas13a to translate arbitrary single‐stranded RNAs into a biomolecular material response. This system exemplified by the development of a cascade of communicating materials that can detect the tumor biomarker microRNA miR19b in patient samples or sequences specific for SARS‐CoV. Specificity of the system is further demonstrated by discriminating between input miRNA sequences with single‐nucleotide differences. To quantitatively understand information processing in the materials cascade, a mathematical model is developed. The model is used to guide systems design for enhancing signal amplification functionality of the overall materials system. The newly designed modular materials can be used to interface desired RNA input with stimulus‐responsive and information‐processing materials for building point‐of‐care suitable sensors as well as multi‐input diagnostic systems with integrated data processing and interpretation.

Abstract Image

用于基于 CRISPR/Cas 的单链 RNA 检测的信号放大生物杂交材料电路
将生物开关与合成构件进行功能整合,可以设计出模块化、对刺激有反应的生物杂交材料。通过可扩散信号将各个模块连接起来,就能设计出信息处理电路。然而,这类系统大多只能对小分子、蛋白质或光学输入做出反应,从而限制了材料电路的传感和应用范围。本文基于 CRISPR/Cas13a 设计了一种高度模块化的生物杂交材料,可将任意单链 RNA 转化为生物分子材料响应。该系统的实例是开发了一系列可检测患者样本中肿瘤生物标志物 microRNA miR19b 或 SARS-CoV 特异性序列的通信材料。通过分辨具有单核苷酸差异的输入 miRNA 序列,进一步证明了该系统的特异性。为了定量理解材料级联中的信息处理,我们建立了一个数学模型。该模型用于指导系统设计,以增强整个材料系统的信号放大功能。新设计的模块化材料可用于将所需的 RNA 输入与刺激响应和信息处理材料连接起来,以构建合适的护理点传感器以及具有集成数据处理和解释功能的多输入诊断系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信