Vasiliki Liagkou, George Fragiadakis, Evangelia Filiopoulou, Christos Michalakelis, Anargyros Tsadimas, Mara Nikolaidou
{"title":"Assessing the Complexity of Cloud Pricing Policies: A Comparative Market Analysis","authors":"Vasiliki Liagkou, George Fragiadakis, Evangelia Filiopoulou, Christos Michalakelis, Anargyros Tsadimas, Mara Nikolaidou","doi":"10.1007/s10723-024-09780-4","DOIUrl":null,"url":null,"abstract":"<p>Cloud computing has gained popularity at a breakneck pace over the last few years. It has revolutionized the way businesses operate by providing a flexible and scalable infrastructure for their computing needs. Cloud providers offer a range of services with a variety of pricing schemes. Cloud pricing schemes are based on functional factors like CPU, RAM, and storage, combined with different payment options, such as pay-per-use, subscription-based, and non-functional aspects, such as scalability and availability. While cloud pricing can be complicated, it is critical for businesses to thoroughly assess and compare pricing policies along with technical requirements to ensure they design an investment strategy. This paper evaluates current pricing strategies for IaaS, CaaS, and PaaS cloud services and also focuses on the three leading cloud providers, Amazon, Microsoft, and Google. To compare pricing policies between different services and providers, a hedonic price index is constructed for each service type based on data collected in 2022. Using the hedonic price index, a comparative analysis between them becomes feasible. The results revealed that providers follow the very same pricing pattern for IaaS and CaaS, with CPU being the main driver of cloud pricing schemes, whereas PaaS pricing fluctuates among cloud providers.</p>","PeriodicalId":54817,"journal":{"name":"Journal of Grid Computing","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Grid Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10723-024-09780-4","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Cloud computing has gained popularity at a breakneck pace over the last few years. It has revolutionized the way businesses operate by providing a flexible and scalable infrastructure for their computing needs. Cloud providers offer a range of services with a variety of pricing schemes. Cloud pricing schemes are based on functional factors like CPU, RAM, and storage, combined with different payment options, such as pay-per-use, subscription-based, and non-functional aspects, such as scalability and availability. While cloud pricing can be complicated, it is critical for businesses to thoroughly assess and compare pricing policies along with technical requirements to ensure they design an investment strategy. This paper evaluates current pricing strategies for IaaS, CaaS, and PaaS cloud services and also focuses on the three leading cloud providers, Amazon, Microsoft, and Google. To compare pricing policies between different services and providers, a hedonic price index is constructed for each service type based on data collected in 2022. Using the hedonic price index, a comparative analysis between them becomes feasible. The results revealed that providers follow the very same pricing pattern for IaaS and CaaS, with CPU being the main driver of cloud pricing schemes, whereas PaaS pricing fluctuates among cloud providers.
期刊介绍:
Grid Computing is an emerging technology that enables large-scale resource sharing and coordinated problem solving within distributed, often loosely coordinated groups-what are sometimes termed "virtual organizations. By providing scalable, secure, high-performance mechanisms for discovering and negotiating access to remote resources, Grid technologies promise to make it possible for scientific collaborations to share resources on an unprecedented scale, and for geographically distributed groups to work together in ways that were previously impossible. Similar technologies are being adopted within industry, where they serve as important building blocks for emerging service provider infrastructures.
Even though the advantages of this technology for classes of applications have been acknowledged, research in a variety of disciplines, including not only multiple domains of computer science (networking, middleware, programming, algorithms) but also application disciplines themselves, as well as such areas as sociology and economics, is needed to broaden the applicability and scope of the current body of knowledge.