Designing innovative heterostructures composed of TiO2/Bi2Te3/carbon cloth for highly efficient sodium-ion batteries†

IF 2.6 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
CrystEngComm Pub Date : 2024-09-03 DOI:10.1039/D4CE00712C
Manshu Han, Yirong Zhao, Yongfeng Bai, Yu Li, Minghua Chen and Qingguo Chen
{"title":"Designing innovative heterostructures composed of TiO2/Bi2Te3/carbon cloth for highly efficient sodium-ion batteries†","authors":"Manshu Han, Yirong Zhao, Yongfeng Bai, Yu Li, Minghua Chen and Qingguo Chen","doi":"10.1039/D4CE00712C","DOIUrl":null,"url":null,"abstract":"<p >Bi-based materials can retain massive amounts of sodium ions through alloying and conversion reactions, resulting in excellent theoretical capacity. However, during the sodiation/desodiation process, there is always a significant volume change in the alloying reaction. In this work, TiO<small><sub>2</sub></small>-coated hexagonal-phase topological insulator (TI) Bi<small><sub>2</sub></small>Te<small><sub>3</sub></small> composites grown on carbon cloth (CC) were prepared using a solvothermal reaction and an atomic layer deposition process (TiO<small><sub>2</sub></small>/Bi<small><sub>2</sub></small>Te<small><sub>3</sub></small>/CC) as anode materials for sodium-ion batteries without the need for a binder. Compared to the pure Bi<small><sub>2</sub></small>Te<small><sub>3</sub></small> electrode, the optimized TiO<small><sub>2</sub></small>/Bi<small><sub>2</sub></small>Te<small><sub>3</sub></small>/CC composite exhibits a superior specific capacity of 450 mA h g<small><sup>−1</sup></small>, a high rate performance of 0.1 A g<small><sup>−1</sup></small>, and a high cycling stability of 100 cycles due to the inherent properties of TIs, contributed by the effective TiO<small><sub>2</sub></small> cladding layer and large interfacial spacing of Bi<small><sub>2</sub></small>Te<small><sub>3</sub></small>. The enhanced reversible capacitance, rate capability, and cycling performances can be attributed to the heterointerfaces and excellent mechanical properties of TiO<small><sub>2</sub></small>, which balance the electronic structure of the building blocks and inhibit the detaching of Bi<small><sub>2</sub></small>Te<small><sub>3</sub></small> due to large internal stresses. The amorphous TiO<small><sub>2</sub></small>/Bi<small><sub>2</sub></small>Te<small><sub>3</sub></small>/CC composite was treated in a tubular furnace to obtain crystalline TiO<small><sub>2</sub></small>/Bi<small><sub>2</sub></small>Te<small><sub>3</sub></small>/CC, and the electrochemical performance of the heterostructures formed by the TiO<small><sub>2</sub></small> coating layer with different properties was compared. This work demonstrates the enormous potential for enhancing the sodium-ion storage capabilities of alloy electrode materials by constructing heterostructures.</p>","PeriodicalId":70,"journal":{"name":"CrystEngComm","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CrystEngComm","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ce/d4ce00712c","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Bi-based materials can retain massive amounts of sodium ions through alloying and conversion reactions, resulting in excellent theoretical capacity. However, during the sodiation/desodiation process, there is always a significant volume change in the alloying reaction. In this work, TiO2-coated hexagonal-phase topological insulator (TI) Bi2Te3 composites grown on carbon cloth (CC) were prepared using a solvothermal reaction and an atomic layer deposition process (TiO2/Bi2Te3/CC) as anode materials for sodium-ion batteries without the need for a binder. Compared to the pure Bi2Te3 electrode, the optimized TiO2/Bi2Te3/CC composite exhibits a superior specific capacity of 450 mA h g−1, a high rate performance of 0.1 A g−1, and a high cycling stability of 100 cycles due to the inherent properties of TIs, contributed by the effective TiO2 cladding layer and large interfacial spacing of Bi2Te3. The enhanced reversible capacitance, rate capability, and cycling performances can be attributed to the heterointerfaces and excellent mechanical properties of TiO2, which balance the electronic structure of the building blocks and inhibit the detaching of Bi2Te3 due to large internal stresses. The amorphous TiO2/Bi2Te3/CC composite was treated in a tubular furnace to obtain crystalline TiO2/Bi2Te3/CC, and the electrochemical performance of the heterostructures formed by the TiO2 coating layer with different properties was compared. This work demonstrates the enormous potential for enhancing the sodium-ion storage capabilities of alloy electrode materials by constructing heterostructures.

Abstract Image

为高效钠离子电池设计由 TiO2/Bi2Te3/Carbon Cloth 组成的创新异质结构
铋基材料可通过合金化和转化反应保留大量钠离子,从而获得出色的理论容量。然而,在钠化/解钠过程中,合金反应总是存在显著的体积变化。本文通过溶热反应和原子层沉积工艺(TiO2/Bi2Te3/CC)制备了生长在碳布(CC)上的 TiO2 涂层六方相拓扑绝缘体(TIs)Bi2Te3 复合材料,作为钠离子电池的负极材料,无需粘结剂。与纯 Bi2Te3 电极相比,经过优化的 TiO2/Bi2Te3/CC 复合材料由于有效的 TiO2 包覆层和 Bi2Te3 的大界面间距,具有 TI 的固有特性,因此表现出卓越的比容量(450 mAh g-1)、高倍率性能(0.1 A g-1)和高循环稳定性(100 次循环)。增强的可逆电容、速率能力和循环性能可归功于 TiO2 的异质界面和优异的机械性能,它们平衡了构建模块的电子结构,并抑制了 Bi2Te3 因较大内应力而脱落。在管式炉中处理无定形 TiO2/Bi2Te3/CC 后得到结晶 TiO2/Bi2Te3/CC,并比较了不同性质的 TiO2 涂层所形成的异质结构的电化学性能。这项工作表明,通过构建异质结构来提高合金电极材料的钠离子存储能力具有巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CrystEngComm
CrystEngComm 化学-化学综合
CiteScore
5.50
自引率
9.70%
发文量
747
审稿时长
1.7 months
期刊介绍: Design and understanding of solid-state and crystalline materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信