1/f-Noise Estimation From Microwave Imager Data With Periodic Gaps

IF 4.7 2区 地球科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Sayak K. Biswas;David B. Kunkee;Gene A. Poe;Steven D. Swadley;Ye Hong
{"title":"1/f-Noise Estimation From Microwave Imager Data With Periodic Gaps","authors":"Sayak K. Biswas;David B. Kunkee;Gene A. Poe;Steven D. Swadley;Ye Hong","doi":"10.1109/JSTARS.2024.3456034","DOIUrl":null,"url":null,"abstract":"We describe a method to estimate coefficients \n<inline-formula><tex-math>${{{\\bm{h}}}_{\\bm{n}}}$</tex-math></inline-formula>\n of a power spectral density of the form \n<inline-formula><tex-math>${\\bm{\\Sigma}}{{{\\bm{h}}}_{\\bm{n}}}/{{{\\bm{f}}}^{\\bm{n}}}$</tex-math></inline-formula>\n (\n<inline-formula><tex-math>${\\bm{f}}\\;{\\bm{\\ }}\\text{is}$</tex-math></inline-formula>\n the frequency and integer \n<inline-formula><tex-math>${\\bm{n}} \\geq 0$</tex-math></inline-formula>\n) from corresponding measured time series with periodic gaps. This technique is applied to consistently estimate the amount of \n<inline-formula><tex-math>$1/{\\bm{f}}$</tex-math></inline-formula>\n noise present in weather system follow-on microwave microwave imager's (MWI) channels from the time-series data collected with different periodic gaps during prelaunch ground tests. The method assumes that the power spectrum of \n<inline-formula><tex-math>$1/{\\bm{f}}$</tex-math></inline-formula>\n noise present in MWI can be represented as a second-order frequency polynomial model of the form \n<inline-formula><tex-math>${\\bm{\\Sigma}}{{{\\bm{h}}}_{\\bm{n}}}/{{{\\bm{f}}}^{\\bm{n}}}{\\bm{\\ }}$</tex-math></inline-formula>\n and attempts to retrieve the true spectrum by solving for the \n<inline-formula><tex-math>${{{\\bm{h}}}_{\\bm{n}}}$</tex-math></inline-formula>\n coefficients using the power spectrum of the time-series data with periodic gaps. The method also assumes that the periodicity and duration of the data gaps are known and consistent for a given time series. The theoretical basis of the new technique is derived and tested using simulation and the new procedure is then applied to real test data to estimate the coefficients of the frequency polynomial. As a quantitative estimate for the \n<inline-formula><tex-math>$1/{\\bm{f}}$</tex-math></inline-formula>\n noise, the radiometer gain fluctuation (\n<inline-formula><tex-math>${\\bm{\\Delta}}{\\bm{G}}/{\\bm{G}}$</tex-math></inline-formula>\n) at 1 Hz is then solved from the frequency polynomial of the gain fluctuation power spectrum. The 1 Hz \n<inline-formula><tex-math>$( {{\\bm{\\Delta}}{\\bm{G}}/{\\bm{G}}} )$</tex-math></inline-formula>\n values were compared between two sets of ground test data for the same MWI channels but with large (92%) and small (4.89%) duty cycles. The similarity of the 1 Hz \n<inline-formula><tex-math>$( {{\\bm{\\Delta}}{\\bm{G}}/{\\bm{G}}} )$</tex-math></inline-formula>\n values extracted from these two disparate datasets establishes confidence in the method. The derived noise power spectrum is then used to simulate MWIs radiometric brightness temperature images and predict the level of unwanted striping in the flight data due to \n<inline-formula><tex-math>$1/{\\bm{f}}$</tex-math></inline-formula>\n noise content. This method may be applicable to solve for the polynomial coefficients of the power spectrum of any noise process, which can be modeled as a frequency polynomial, given the polynomial form is known a priori.","PeriodicalId":13116,"journal":{"name":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10669073","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10669073/","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

We describe a method to estimate coefficients ${{{\bm{h}}}_{\bm{n}}}$ of a power spectral density of the form ${\bm{\Sigma}}{{{\bm{h}}}_{\bm{n}}}/{{{\bm{f}}}^{\bm{n}}}$ ( ${\bm{f}}\;{\bm{\ }}\text{is}$ the frequency and integer ${\bm{n}} \geq 0$ ) from corresponding measured time series with periodic gaps. This technique is applied to consistently estimate the amount of $1/{\bm{f}}$ noise present in weather system follow-on microwave microwave imager's (MWI) channels from the time-series data collected with different periodic gaps during prelaunch ground tests. The method assumes that the power spectrum of $1/{\bm{f}}$ noise present in MWI can be represented as a second-order frequency polynomial model of the form ${\bm{\Sigma}}{{{\bm{h}}}_{\bm{n}}}/{{{\bm{f}}}^{\bm{n}}}{\bm{\ }}$ and attempts to retrieve the true spectrum by solving for the ${{{\bm{h}}}_{\bm{n}}}$ coefficients using the power spectrum of the time-series data with periodic gaps. The method also assumes that the periodicity and duration of the data gaps are known and consistent for a given time series. The theoretical basis of the new technique is derived and tested using simulation and the new procedure is then applied to real test data to estimate the coefficients of the frequency polynomial. As a quantitative estimate for the $1/{\bm{f}}$ noise, the radiometer gain fluctuation ( ${\bm{\Delta}}{\bm{G}}/{\bm{G}}$ ) at 1 Hz is then solved from the frequency polynomial of the gain fluctuation power spectrum. The 1 Hz $( {{\bm{\Delta}}{\bm{G}}/{\bm{G}}} )$ values were compared between two sets of ground test data for the same MWI channels but with large (92%) and small (4.89%) duty cycles. The similarity of the 1 Hz $( {{\bm{\Delta}}{\bm{G}}/{\bm{G}}} )$ values extracted from these two disparate datasets establishes confidence in the method. The derived noise power spectrum is then used to simulate MWIs radiometric brightness temperature images and predict the level of unwanted striping in the flight data due to $1/{\bm{f}}$ noise content. This method may be applicable to solve for the polynomial coefficients of the power spectrum of any noise process, which can be modeled as a frequency polynomial, given the polynomial form is known a priori.
从具有周期性间隙的微波成像仪数据中进行 1/f 噪声估计
我们描述了一种估算功率谱密度系数 ${{\bm{h}}}_{\bm{n}}$ 的方法,其形式为 ${\bm\Sigma}}{{{\bm{h}}}_{{\bm{n}}}/{{{\bm{f}}}^{\bm{n}}}$ (${\bm{f}}/{{\bm{n}}};{\bm{}}text{is}$频率和整数${\bm{n}} \geq0$)。该技术用于从发射前地面测试期间收集到的具有不同周期间隙的时间序列数据中持续估算气象系统后续微波成像仪(MWI)信道中存在的1/{bm{f}}$噪声量。该方法假定 MWI 中存在的 1/{\bm{f}}$ 噪声的功率谱可以表示为一个二阶{/{bm{f}}$噪声的功率谱可以表示为二阶频率多项式模型,其形式为${\bm{Sigma}}{{{bm{h}}}_{{\bm{n}}}/{{\bm{f}}}^{\bm{n}}}}{\bm{m{}}$,并试图通过使用具有周期性间隙的时间序列数据的功率谱求解${{\bm{h}}}_{\bm{n}}}$系数来检索真实频谱。的功率谱来求解 ${{bm}{h}}_{bm{n}}$ 系数。该方法还假定数据间隙的周期性和持续时间是已知的,并且对于给定的时间序列是一致的。新技术的理论基础是通过模拟推导和测试得出的,然后将新程序应用于实际测试数据,以估计频率多项式的系数。作为对 1/{{bm{f}}$ 噪声的定量估计,1 Hz 的辐射计增益波动(${\bm{\Delta}}{\bm{G}}/\{bm{G}}$)由增益波动功率谱的频率多项式求解。我们比较了两组地面测试数据的 1 Hz $( {{\bm{\Delta}}{\bm{G}}/{\bm{G}} )$ 值,这两组数据针对的是相同的 MWI 信道,但占空比分别为大(92%)和小(4.89%)。从这两个不同数据集中提取的 1 Hz $( {{\bm{\Delta}}{\bm{G}}/{\bm{G}} )$ 值的相似性增强了对该方法的信心。得出的噪声功率谱可用于模拟 MWIs 辐射亮度温度图像,并预测飞行数据中由于 1/{bm{f}}$ 噪声含量而产生的不需要的条纹程度。该方法可用于求解任何噪声过程功率谱的多项式系数,只要事先知道多项式的形式,就可以将其建模为频率多项式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.30
自引率
10.90%
发文量
563
审稿时长
4.7 months
期刊介绍: The IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing addresses the growing field of applications in Earth observations and remote sensing, and also provides a venue for the rapidly expanding special issues that are being sponsored by the IEEE Geosciences and Remote Sensing Society. The journal draws upon the experience of the highly successful “IEEE Transactions on Geoscience and Remote Sensing” and provide a complementary medium for the wide range of topics in applied earth observations. The ‘Applications’ areas encompasses the societal benefit areas of the Global Earth Observations Systems of Systems (GEOSS) program. Through deliberations over two years, ministers from 50 countries agreed to identify nine areas where Earth observation could positively impact the quality of life and health of their respective countries. Some of these are areas not traditionally addressed in the IEEE context. These include biodiversity, health and climate. Yet it is the skill sets of IEEE members, in areas such as observations, communications, computers, signal processing, standards and ocean engineering, that form the technical underpinnings of GEOSS. Thus, the Journal attracts a broad range of interests that serves both present members in new ways and expands the IEEE visibility into new areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信