{"title":"Neutron–antineutron oscillation accompanied by CP-violation in magnetic fields","authors":"Yongliang Hao, Kamphamba Sokalao Nyirenda, Zhenwei Chen","doi":"10.1088/1361-6471/ad66ef","DOIUrl":null,"url":null,"abstract":"In this work, we explore the possibility of the <italic toggle=\"yes\">n</italic>–<inline-formula>\n<tex-math>\n<?CDATA $\\bar{n}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mover accent=\"true\"><mml:mrow><mml:mi>n</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:math>\n<inline-graphic xlink:href=\"jpgad66efieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> oscillation accompanied by CP-violation in the presence of magnetic fields. The <italic toggle=\"yes\">n</italic>–<inline-formula>\n<tex-math>\n<?CDATA $\\bar{n}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mover accent=\"true\"><mml:mrow><mml:mi>n</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:math>\n<inline-graphic xlink:href=\"jpgad66efieqn2.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> oscillation, which violates the baryon number (<inline-formula>\n<tex-math>\n<?CDATA ${ \\mathcal B }$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mi mathvariant=\"script\">B</mml:mi></mml:math>\n<inline-graphic xlink:href=\"jpgad66efieqn3.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>) by two units (<inline-formula>\n<tex-math>\n<?CDATA $| {\\rm{\\Delta }}{ \\mathcal B }| =2$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mo stretchy=\"false\">∣</mml:mo><mml:mi mathvariant=\"normal\">Δ</mml:mi><mml:mi mathvariant=\"script\">B</mml:mi><mml:mo stretchy=\"false\">∣</mml:mo><mml:mo>=</mml:mo><mml:mn>2</mml:mn></mml:math>\n<inline-graphic xlink:href=\"jpgad66efieqn4.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>), can originate from the mixing between the neutron (<italic toggle=\"yes\">n</italic>) and the neutral elementary particle (<italic toggle=\"yes\">η</italic>) and may give rise to non-trivial physical consequences that can be testable in future experiments. We show that the probability of the <italic toggle=\"yes\">n</italic>–<inline-formula>\n<tex-math>\n<?CDATA $\\bar{n}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mover accent=\"true\"><mml:mrow><mml:mi>n</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:math>\n<inline-graphic xlink:href=\"jpgad66efieqn5.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> oscillation can be greatly enhanced by properly adjusting the magnetic field. In particular, the peak values of the oscillation probability in the presence of resonance magnetic fields can be 8–10 orders of magnitude higher than that in the absence of magnetic fields. We point out that there might not be sizable CP-violating effects in the <italic toggle=\"yes\">n</italic>–<inline-formula>\n<tex-math>\n<?CDATA $\\bar{n}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mover accent=\"true\"><mml:mrow><mml:mi>n</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:math>\n<inline-graphic xlink:href=\"jpgad66efieqn6.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> oscillation unless the mass of <italic toggle=\"yes\">η</italic> is close to the mass of the neutron. We also analyze the interplay among various parameters associated with both <inline-formula>\n<tex-math>\n<?CDATA ${ \\mathcal B }$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mi mathvariant=\"script\">B</mml:mi></mml:math>\n<inline-graphic xlink:href=\"jpgad66efieqn7.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>-violation and CP-violation and attempt to disentangle the effects of such parameters. The <italic toggle=\"yes\">n</italic>–<inline-formula>\n<tex-math>\n<?CDATA $\\bar{n}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mover accent=\"true\"><mml:mrow><mml:mi>n</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:math>\n<inline-graphic xlink:href=\"jpgad66efieqn8.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> oscillation process accompanied by CP-violation may open a promising avenue for exploring new physics beyond the Standard Model (SM).","PeriodicalId":16766,"journal":{"name":"Journal of Physics G: Nuclear and Particle Physics","volume":"26 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics G: Nuclear and Particle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6471/ad66ef","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we explore the possibility of the n–n¯ oscillation accompanied by CP-violation in the presence of magnetic fields. The n–n¯ oscillation, which violates the baryon number (B) by two units (∣ΔB∣=2), can originate from the mixing between the neutron (n) and the neutral elementary particle (η) and may give rise to non-trivial physical consequences that can be testable in future experiments. We show that the probability of the n–n¯ oscillation can be greatly enhanced by properly adjusting the magnetic field. In particular, the peak values of the oscillation probability in the presence of resonance magnetic fields can be 8–10 orders of magnitude higher than that in the absence of magnetic fields. We point out that there might not be sizable CP-violating effects in the n–n¯ oscillation unless the mass of η is close to the mass of the neutron. We also analyze the interplay among various parameters associated with both B-violation and CP-violation and attempt to disentangle the effects of such parameters. The n–n¯ oscillation process accompanied by CP-violation may open a promising avenue for exploring new physics beyond the Standard Model (SM).
期刊介绍:
Journal of Physics G: Nuclear and Particle Physics (JPhysG) publishes articles on theoretical and experimental topics in all areas of nuclear and particle physics, including nuclear and particle astrophysics. The journal welcomes submissions from any interface area between these fields.
All aspects of fundamental nuclear physics research, including:
nuclear forces and few-body systems;
nuclear structure and nuclear reactions;
rare decays and fundamental symmetries;
hadronic physics, lattice QCD;
heavy-ion physics;
hot and dense matter, QCD phase diagram.
All aspects of elementary particle physics research, including:
high-energy particle physics;
neutrino physics;
phenomenology and theory;
beyond standard model physics;
electroweak interactions;
fundamental symmetries.
All aspects of nuclear and particle astrophysics including:
nuclear physics of stars and stellar explosions;
nucleosynthesis;
nuclear equation of state;
astrophysical neutrino physics;
cosmic rays;
dark matter.
JPhysG publishes a variety of article types for the community. As well as high-quality research papers, this includes our prestigious topical review series, focus issues, and the rapid publication of letters.