L Csedreki, Gy Gyürky, D Rapagnani, G F Ciani, M Aliotta, C Ananna, L Barbieri, F Barile, D Bemmerer, A Best, A Boeltzig, C Broggini, C G Bruno, A Caciolli, F Casaburo, F Cavanna, P Colombetti, A Compagnucci, P Corvisiero, T Davinson, R Depalo, A Di Leva, Z Elekes, F Ferraro, A Formicola, Zs Fülöp, G Gervino, A Guglielmetti, C Gustavino, G Imbriani, M Junker, M Lugaro, P Marigo, J Marsh, E Masha, R Menegazzo, V Paticchio, R Perrino, D Piatti, P Prati, D Robb, L Schiavulli, R S Sidhu, J Skowronski, O Straniero, T Szücs, S Zavatarelli
{"title":"Status and future directions for direct cross-section measurements of the 13C(a,n)16O reaction for astrophysics","authors":"L Csedreki, Gy Gyürky, D Rapagnani, G F Ciani, M Aliotta, C Ananna, L Barbieri, F Barile, D Bemmerer, A Best, A Boeltzig, C Broggini, C G Bruno, A Caciolli, F Casaburo, F Cavanna, P Colombetti, A Compagnucci, P Corvisiero, T Davinson, R Depalo, A Di Leva, Z Elekes, F Ferraro, A Formicola, Zs Fülöp, G Gervino, A Guglielmetti, C Gustavino, G Imbriani, M Junker, M Lugaro, P Marigo, J Marsh, E Masha, R Menegazzo, V Paticchio, R Perrino, D Piatti, P Prati, D Robb, L Schiavulli, R S Sidhu, J Skowronski, O Straniero, T Szücs, S Zavatarelli","doi":"10.1088/1361-6471/ad6a2a","DOIUrl":null,"url":null,"abstract":"The <sup>13</sup>C(<italic toggle=\"yes\">α</italic>,<italic toggle=\"yes\">n</italic>)<sup>16</sup>O reaction is the main neutron source of the <italic toggle=\"yes\">s</italic>-process taking place in thermally pulsing AGB stars and it is one of the main candidate sources of neutrons for the <italic toggle=\"yes\">i</italic>-process in the astrophysical sites proposed so far. Therefore, its rate is crucial to understand the production of the nuclei heavier than iron in the Universe. For the first time, the LUNA collaboration was able to measure the <sup>13</sup>C(<italic toggle=\"yes\">α</italic>,<italic toggle=\"yes\">n</italic>)<sup>16</sup>O cross section at <italic toggle=\"yes\">E</italic>\n<sub>c.m.</sub> = 0.23−0.3 MeV drastically reducing the uncertainty of the <italic toggle=\"yes\">S</italic>(<italic toggle=\"yes\">E</italic>)-factor in the astrophysically relevant energy range. In this paper, we provide details and critical thoughts about the LUNA measurement and compare them with the current understanding of the <sup>13</sup>C(<italic toggle=\"yes\">α</italic>,<italic toggle=\"yes\">n</italic>)<sup>16</sup>O reaction in view of future prospect for higher energy measurements. The two very recent results (from the University of Notre Dame and the JUNA collaboration) published after the LUNA data represent an important step forward. There is, however, still room for a lot of improvement in the experimental study of the <sup>13</sup>C(<italic toggle=\"yes\">α</italic>,<italic toggle=\"yes\">n</italic>)<sup>16</sup>O reaction, as emphasized in the present manuscript. We conclude that to provide significantly better constraints on the low-energy extrapolation, experimental data need to be provided over a wide energy range, which overlaps with the energy range of current measurements. Furthermore, future experiments need to focus on the proper target characterisation, the determination of neutron detection efficiency having more nuclear physics input, such as angular distribution of the <sup>13</sup>C(<italic toggle=\"yes\">α</italic>,<italic toggle=\"yes\">n</italic>)<sup>16</sup>O reaction below <italic toggle=\"yes\">E</italic>\n<sub>\n<italic toggle=\"yes\">α</italic>\n</sub> < 0.8 MeV and study of nuclear properties of monoenergetic neutron sources and/or via the study of sharp resonances of <sup>13</sup>C(<italic toggle=\"yes\">α</italic>,<italic toggle=\"yes\">n</italic>)<sup>16</sup>O. Moreover, comprehensive, multichannel <italic toggle=\"yes\">R</italic>-matrix analysis with a proper estimate of uncertainty budget of experimental data are still required.","PeriodicalId":16766,"journal":{"name":"Journal of Physics G: Nuclear and Particle Physics","volume":"24 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics G: Nuclear and Particle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6471/ad6a2a","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
The 13C(α,n)16O reaction is the main neutron source of the s-process taking place in thermally pulsing AGB stars and it is one of the main candidate sources of neutrons for the i-process in the astrophysical sites proposed so far. Therefore, its rate is crucial to understand the production of the nuclei heavier than iron in the Universe. For the first time, the LUNA collaboration was able to measure the 13C(α,n)16O cross section at Ec.m. = 0.23−0.3 MeV drastically reducing the uncertainty of the S(E)-factor in the astrophysically relevant energy range. In this paper, we provide details and critical thoughts about the LUNA measurement and compare them with the current understanding of the 13C(α,n)16O reaction in view of future prospect for higher energy measurements. The two very recent results (from the University of Notre Dame and the JUNA collaboration) published after the LUNA data represent an important step forward. There is, however, still room for a lot of improvement in the experimental study of the 13C(α,n)16O reaction, as emphasized in the present manuscript. We conclude that to provide significantly better constraints on the low-energy extrapolation, experimental data need to be provided over a wide energy range, which overlaps with the energy range of current measurements. Furthermore, future experiments need to focus on the proper target characterisation, the determination of neutron detection efficiency having more nuclear physics input, such as angular distribution of the 13C(α,n)16O reaction below Eα < 0.8 MeV and study of nuclear properties of monoenergetic neutron sources and/or via the study of sharp resonances of 13C(α,n)16O. Moreover, comprehensive, multichannel R-matrix analysis with a proper estimate of uncertainty budget of experimental data are still required.
期刊介绍:
Journal of Physics G: Nuclear and Particle Physics (JPhysG) publishes articles on theoretical and experimental topics in all areas of nuclear and particle physics, including nuclear and particle astrophysics. The journal welcomes submissions from any interface area between these fields.
All aspects of fundamental nuclear physics research, including:
nuclear forces and few-body systems;
nuclear structure and nuclear reactions;
rare decays and fundamental symmetries;
hadronic physics, lattice QCD;
heavy-ion physics;
hot and dense matter, QCD phase diagram.
All aspects of elementary particle physics research, including:
high-energy particle physics;
neutrino physics;
phenomenology and theory;
beyond standard model physics;
electroweak interactions;
fundamental symmetries.
All aspects of nuclear and particle astrophysics including:
nuclear physics of stars and stellar explosions;
nucleosynthesis;
nuclear equation of state;
astrophysical neutrino physics;
cosmic rays;
dark matter.
JPhysG publishes a variety of article types for the community. As well as high-quality research papers, this includes our prestigious topical review series, focus issues, and the rapid publication of letters.