Error bounds of Median-of-means estimators with VC-dimension

Yuxuan Wang, Yiming Chen, Hanchao Wang, Lixin Zhang
{"title":"Error bounds of Median-of-means estimators with VC-dimension","authors":"Yuxuan Wang, Yiming Chen, Hanchao Wang, Lixin Zhang","doi":"arxiv-2409.03410","DOIUrl":null,"url":null,"abstract":"We obtain the upper error bounds of robust estimators for mean vector, using\nthe median-of-means (MOM) method. The method is designed to handle data with\nheavy tails and contamination, with only a finite second moment, which is\nweaker than many others, relying on the VC dimension rather than the Rademacher\ncomplexity to measure statistical complexity. This allows us to implement MOM\nin covariance estimation, without imposing conditions such as $L$-sub-Gaussian\nor $L_{4}-L_{2}$ norm equivalence. In particular, we derive a new robust\nestimator, the MOM version of the halfspace depth, along with error bounds for\nmean estimation in any norm.","PeriodicalId":501379,"journal":{"name":"arXiv - STAT - Statistics Theory","volume":"61 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We obtain the upper error bounds of robust estimators for mean vector, using the median-of-means (MOM) method. The method is designed to handle data with heavy tails and contamination, with only a finite second moment, which is weaker than many others, relying on the VC dimension rather than the Rademacher complexity to measure statistical complexity. This allows us to implement MOM in covariance estimation, without imposing conditions such as $L$-sub-Gaussian or $L_{4}-L_{2}$ norm equivalence. In particular, we derive a new robust estimator, the MOM version of the halfspace depth, along with error bounds for mean estimation in any norm.
具有 VC 维度的均值中值估计器的误差边界
我们利用均值中值(MOM)方法获得了均值向量稳健估计器的误差上限。该方法设计用于处理尾部和污染严重的数据,只有有限的第二矩,比许多其他方法更弱,依靠 VC 维度而不是拉德马赫复杂性来衡量统计复杂性。这样,我们就可以实现 MOMin 协方差估计,而无需强加诸如 $L$-sub-Gaussian 或 $L_{4}-L_{2}$ norm equivalence 等条件。特别是,我们推导出了一种新的稳健估计器--半空间深度的 MOM 版本,以及在任何规范下进行均值估计的误差边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信