Bulk Spectra of Truncated Sample Covariance Matrices

Subhroshekhar Ghosh, Soumendu Sundar Mukherjee, Himasish Talukdar
{"title":"Bulk Spectra of Truncated Sample Covariance Matrices","authors":"Subhroshekhar Ghosh, Soumendu Sundar Mukherjee, Himasish Talukdar","doi":"arxiv-2409.02911","DOIUrl":null,"url":null,"abstract":"Determinantal Point Processes (DPPs), which originate from quantum and\nstatistical physics, are known for modelling diversity. Recent research [Ghosh\nand Rigollet (2020)] has demonstrated that certain matrix-valued $U$-statistics\n(that are truncated versions of the usual sample covariance matrix) can\neffectively estimate parameters in the context of Gaussian DPPs and enhance\ndimension reduction techniques, outperforming standard methods like PCA in\nclustering applications. This paper explores the spectral properties of these\nmatrix-valued $U$-statistics in the null setting of an isotropic design. These\nmatrices may be represented as $X L X^\\top$, where $X$ is a data matrix and $L$\nis the Laplacian matrix of a random geometric graph associated to $X$. The main\nmathematically interesting twist here is that the matrix $L$ is dependent on\n$X$. We give complete descriptions of the bulk spectra of these matrix-valued\n$U$-statistics in terms of the Stieltjes transforms of their empirical spectral\nmeasures. The results and the techniques are in fact able to address a broader\nclass of kernelised random matrices, connecting their limiting spectra to\ngeneralised Mar\\v{c}enko-Pastur laws and free probability.","PeriodicalId":501379,"journal":{"name":"arXiv - STAT - Statistics Theory","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Determinantal Point Processes (DPPs), which originate from quantum and statistical physics, are known for modelling diversity. Recent research [Ghosh and Rigollet (2020)] has demonstrated that certain matrix-valued $U$-statistics (that are truncated versions of the usual sample covariance matrix) can effectively estimate parameters in the context of Gaussian DPPs and enhance dimension reduction techniques, outperforming standard methods like PCA in clustering applications. This paper explores the spectral properties of these matrix-valued $U$-statistics in the null setting of an isotropic design. These matrices may be represented as $X L X^\top$, where $X$ is a data matrix and $L$ is the Laplacian matrix of a random geometric graph associated to $X$. The main mathematically interesting twist here is that the matrix $L$ is dependent on $X$. We give complete descriptions of the bulk spectra of these matrix-valued $U$-statistics in terms of the Stieltjes transforms of their empirical spectral measures. The results and the techniques are in fact able to address a broader class of kernelised random matrices, connecting their limiting spectra to generalised Mar\v{c}enko-Pastur laws and free probability.
截断样本协方差矩阵的总体频谱
确定点过程(DPPs)源于量子物理学和统计物理学,以建模多样性而著称。最近的研究[Ghoshand Rigollet (2020)]证明,某些矩阵值 $U$统计量(通常是样本协方差矩阵的截断版本)可以有效地估计高斯 DPPs 和增强维度缩减技术中的参数,其性能优于 PCA 倾斜应用等标准方法。本文探讨了在各向同性设计的空设置中,这些矩阵值 $U$ 统计量的频谱特性。这些矩阵可以表示为 $X L X^\top$,其中 $X$ 是数据矩阵,$L$ 是与 $X$ 相关的随机几何图的拉普拉斯矩阵。这里在数学上最有趣的转折是矩阵 $L$ 与 $X$ 有关。我们根据这些矩阵值$U$统计量的经验光谱度量的斯蒂尔杰斯变换,给出了这些矩阵值$U$统计量的体谱的完整描述。事实上,这些结果和技术能够处理更广泛的核化随机矩阵,将它们的极限谱与广义的 Mar\v{c}enko-Pastur 规律和自由概率联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信