Improved Catoni-Type Confidence Sequences for Estimating the Mean When the Variance Is Infinite

Chengfu Wei, Jordan Stoyanov, Yiming Chen, Zijun Chen
{"title":"Improved Catoni-Type Confidence Sequences for Estimating the Mean When the Variance Is Infinite","authors":"Chengfu Wei, Jordan Stoyanov, Yiming Chen, Zijun Chen","doi":"arxiv-2409.04198","DOIUrl":null,"url":null,"abstract":"We consider a discrete time stochastic model with infinite variance and study\nthe mean estimation problem as in Wang and Ramdas (2023). We refine the\nCatoni-type confidence sequence (abbr. CS) and use an idea of Bhatt et al.\n(2022) to achieve notable improvements of some currently existing results for\nsuch model. Specifically, for given $\\alpha \\in (0, 1]$, we assume that there is a known\nupper bound $\\nu_{\\alpha} > 0$ for the $(1 + \\alpha)$-th central moment of the\npopulation distribution that the sample follows. Our findings replicate and\n`optimize' results in the above references for $\\alpha = 1$ (i.e., in models\nwith finite variance) and enhance the results for $\\alpha < 1$. Furthermore, by\nemploying the stitching method, we derive an upper bound on the width of the CS\nas $\\mathcal{O} \\left(((\\log \\log t)/t)^{\\frac{\\alpha}{1+\\alpha}}\\right)$ for\nthe shrinking rate as $t$ increases, and $\\mathcal{O}(\\left(\\log\n(1/\\delta)\\right)^{\\frac{\\alpha }{1+\\alpha}})$ for the growth rate as $\\delta$\ndecreases. These bounds are improving upon the bounds found in Wang and Ramdas\n(2023). Our theoretical results are illustrated by results from a series of\nsimulation experiments. Comparing the performance of our improved\n$\\alpha$-Catoni-type CS with the bound in the above cited paper indicates that\nour CS achieves tighter width.","PeriodicalId":501379,"journal":{"name":"arXiv - STAT - Statistics Theory","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a discrete time stochastic model with infinite variance and study the mean estimation problem as in Wang and Ramdas (2023). We refine the Catoni-type confidence sequence (abbr. CS) and use an idea of Bhatt et al. (2022) to achieve notable improvements of some currently existing results for such model. Specifically, for given $\alpha \in (0, 1]$, we assume that there is a known upper bound $\nu_{\alpha} > 0$ for the $(1 + \alpha)$-th central moment of the population distribution that the sample follows. Our findings replicate and `optimize' results in the above references for $\alpha = 1$ (i.e., in models with finite variance) and enhance the results for $\alpha < 1$. Furthermore, by employing the stitching method, we derive an upper bound on the width of the CS as $\mathcal{O} \left(((\log \log t)/t)^{\frac{\alpha}{1+\alpha}}\right)$ for the shrinking rate as $t$ increases, and $\mathcal{O}(\left(\log (1/\delta)\right)^{\frac{\alpha }{1+\alpha}})$ for the growth rate as $\delta$ decreases. These bounds are improving upon the bounds found in Wang and Ramdas (2023). Our theoretical results are illustrated by results from a series of simulation experiments. Comparing the performance of our improved $\alpha$-Catoni-type CS with the bound in the above cited paper indicates that our CS achieves tighter width.
方差无限时估计均值的改进卡托尼型置信序列
我们考虑了一个具有无限方差的离散时间随机模型,并研究了 Wang 和 Ramdas(2023)的均值估计问题。我们完善了卡托尼型置信序列(CS),并利用巴特等人(2022)的一个想法,对该模型目前已有的一些结果进行了显著改进。具体来说,对于(0,1]$中的给定$\alpha,我们假设样本所遵循的群体分布的$(1 + \alpha)$-次中心矩有一个已知的上界$\nu_{\alpha}>0$。我们的研究结果复制并 "优化 "了上述参考文献中$\alpha = 1$(即有限方差模型)的结果,并增强了$\alpha < 1$的结果。此外,通过使用缝合方法,我们推导出 CS 宽度的上界为 $\mathcal{O}\left(((\log\log t)/t)^{\frac\{alpha}{1+\alpha}\right)$表示随着$t$的增加而收缩的速度,$mathcal{O}(\left(\log(1/\delta)\right)^{\frac\{alpha}{1+\alpha})$表示随着$\delta$的减少而增长的速度。这些界限是对 Wang 和 Ramdas(2023 年)发现的界限的改进。一系列模拟实验的结果对我们的理论结果进行了说明。将我们改进的$α$-Catoni 型 CS 的性能与上述论文中的边界进行比较,可以看出我们的 CS 实现了更严格的宽度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信