Exact exponential tail estimation for sums of independent centered random variables, under natural norming, with applications to the theory of U-statistics

M. R. Formica, E. Ostrovsky, L. Sirota
{"title":"Exact exponential tail estimation for sums of independent centered random variables, under natural norming, with applications to the theory of U-statistics","authors":"M. R. Formica, E. Ostrovsky, L. Sirota","doi":"arxiv-2409.05083","DOIUrl":null,"url":null,"abstract":"We derive in this short report the exact exponential decreasing tail of\ndistribution for naturel normed sums of independent centered random variables\n(r.v.), applying the theory of Grand Lebesgue Spaces (GLS). We consider also\nsome applications into the theory of U statistics, where we deduce alike for\nthe independent variables the refined exponential tail estimates for ones under\nnatural norming sequence.","PeriodicalId":501379,"journal":{"name":"arXiv - STAT - Statistics Theory","volume":"75 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We derive in this short report the exact exponential decreasing tail of distribution for naturel normed sums of independent centered random variables (r.v.), applying the theory of Grand Lebesgue Spaces (GLS). We consider also some applications into the theory of U statistics, where we deduce alike for the independent variables the refined exponential tail estimates for ones under natural norming sequence.
自然规范下独立居中随机变量之和的精确指数尾估计,以及在 U 统计理论中的应用
在这篇简短的报告中,我们应用大勒贝格空间(GLS)理论,推导出独立居中随机变量(r.v.)的自然规范和的精确指数递减分布尾部。我们还考虑了 U 统计理论中的一些应用,在这些应用中,我们同样为自变量推导出了非自然规范序列的精炼指数尾估计值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信