Empirical Equilibria in Agent-based Economic systems with Learning agents

Kshama Dwarakanath, Svitlana Vyetrenko, Tucker Balch
{"title":"Empirical Equilibria in Agent-based Economic systems with Learning agents","authors":"Kshama Dwarakanath, Svitlana Vyetrenko, Tucker Balch","doi":"arxiv-2408.12038","DOIUrl":null,"url":null,"abstract":"We present an agent-based simulator for economic systems with heterogeneous\nhouseholds, firms, central bank, and government agents. These agents interact\nto define production, consumption, and monetary flow. Each agent type has\ndistinct objectives, such as households seeking utility from consumption and\nthe central bank targeting inflation and production. We define this multi-agent\neconomic system using an OpenAI Gym-style environment, enabling agents to\noptimize their objectives through reinforcement learning. Standard multi-agent\nreinforcement learning (MARL) schemes, like independent learning, enable agents\nto learn concurrently but do not address whether the resulting strategies are\nat equilibrium. This study integrates the Policy Space Response Oracle (PSRO)\nalgorithm, which has shown superior performance over independent MARL in games\nwith homogeneous agents, with economic agent-based modeling. We use PSRO to\ndevelop agent policies approximating Nash equilibria of the empirical economic\ngame, thereby linking to economic equilibria. Our results demonstrate that PSRO\nstrategies achieve lower regret values than independent MARL strategies in our\neconomic system with four agent types. This work aims to bridge artificial\nintelligence, economics, and empirical game theory towards future research.","PeriodicalId":501273,"journal":{"name":"arXiv - ECON - General Economics","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - ECON - General Economics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.12038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present an agent-based simulator for economic systems with heterogeneous households, firms, central bank, and government agents. These agents interact to define production, consumption, and monetary flow. Each agent type has distinct objectives, such as households seeking utility from consumption and the central bank targeting inflation and production. We define this multi-agent economic system using an OpenAI Gym-style environment, enabling agents to optimize their objectives through reinforcement learning. Standard multi-agent reinforcement learning (MARL) schemes, like independent learning, enable agents to learn concurrently but do not address whether the resulting strategies are at equilibrium. This study integrates the Policy Space Response Oracle (PSRO) algorithm, which has shown superior performance over independent MARL in games with homogeneous agents, with economic agent-based modeling. We use PSRO to develop agent policies approximating Nash equilibria of the empirical economic game, thereby linking to economic equilibria. Our results demonstrate that PSRO strategies achieve lower regret values than independent MARL strategies in our economic system with four agent types. This work aims to bridge artificial intelligence, economics, and empirical game theory towards future research.
具有学习能力的代理经济系统中的经验均衡点
我们提出了一种基于代理的模拟器,用于模拟具有异质家庭、企业、中央银行和政府代理的经济系统。这些代理通过互动来定义生产、消费和货币流。每种代理类型都有不同的目标,例如家庭追求消费效用,而中央银行则以通货膨胀和生产为目标。我们使用 OpenAI Gym 风格的环境来定义这个多代理经济系统,使代理能够通过强化学习来优化其目标。标准的多代理强化学习(MARL)方案,如独立学习,能让代理同时学习,但并不解决所产生的策略是否达到均衡的问题。本研究将 "政策空间响应甲骨文(PSRO)"算法与基于经济代理的建模相结合,后者在同质代理的博弈中表现出优于独立 MARL 的性能。我们使用 PSRO 制定近似于实证经济博弈纳什均衡的代理策略,从而与经济均衡相联系。我们的研究结果表明,在有四种代理类型的经济系统中,PSRO策略比独立的MARL策略获得更低的后悔值。这项工作旨在为人工智能、经济学和实证博弈论架起一座桥梁,促进未来的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信