On tail inference in iid settings with nonnegative extreme value index

Taku Moriyama
{"title":"On tail inference in iid settings with nonnegative extreme value index","authors":"Taku Moriyama","doi":"arxiv-2409.00906","DOIUrl":null,"url":null,"abstract":"In extreme value inference it is a fundamental problem how the target value\nis required to be extreme by the extreme value theory. In iid settings this\nstudy both theoretically and numerically compares tail estimators, which are\nbased on either or both of the extreme value theory and the nonparametric\nsmoothing. This study considers tail probability estimation and mean excess\nfunction estimation. This study assumes that the extreme value index of the underlying\ndistribution is nonnegative. Specifically, the Hall class or the Weibull class\nof distributions is supposed in order to obtain the convergence rates of the\nestimators. This study investigates the nonparametric kernel type estimators,\nthe fitting estimators to the generalized Pareto distribution and the plug-in\nestimators of the Hall distribution, which was proposed by Hall and Weissman\n(1997). In simulation studies the mean squared errors of the estimators in some\nfinite sample cases are compared.","PeriodicalId":501379,"journal":{"name":"arXiv - STAT - Statistics Theory","volume":"61 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.00906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In extreme value inference it is a fundamental problem how the target value is required to be extreme by the extreme value theory. In iid settings this study both theoretically and numerically compares tail estimators, which are based on either or both of the extreme value theory and the nonparametric smoothing. This study considers tail probability estimation and mean excess function estimation. This study assumes that the extreme value index of the underlying distribution is nonnegative. Specifically, the Hall class or the Weibull class of distributions is supposed in order to obtain the convergence rates of the estimators. This study investigates the nonparametric kernel type estimators, the fitting estimators to the generalized Pareto distribution and the plug-in estimators of the Hall distribution, which was proposed by Hall and Weissman (1997). In simulation studies the mean squared errors of the estimators in some finite sample cases are compared.
关于具有非负极值指数的 iid 设置中的尾部推断
在极值推断中,极值理论如何要求目标值达到极值是一个基本问题。本研究对基于极值理论和非参数平滑的尾估计器进行了理论和数值上的比较。本研究考虑了尾部概率估计和均值函数估计。本研究假设基础分布的极值指数为非负。具体地说,为了获得估计器的收敛率,假定了霍尔类或韦布尔类分布。本研究探讨了非参数核型估计器、广义帕累托分布拟合估计器以及霍尔分布的插入式估计器(由霍尔和魏斯曼(1997)提出)。在模拟研究中,比较了估计器在一些无限样本情况下的均方误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信