Deconvolution of repeated measurements corrupted by unknown noise

Jérémie Capitao-Miniconi, Elisabeth Gassiat, Luc Lehéricy
{"title":"Deconvolution of repeated measurements corrupted by unknown noise","authors":"Jérémie Capitao-Miniconi, Elisabeth Gassiat, Luc Lehéricy","doi":"arxiv-2409.02014","DOIUrl":null,"url":null,"abstract":"Recent advances have demonstrated the possibility of solving the\ndeconvolution problem without prior knowledge of the noise distribution. In\nthis paper, we study the repeated measurements model, where information is\nderived from multiple measurements of X perturbed independently by additive\nerrors. Our contributions include establishing identifiability without any\nassumption on the noise except for coordinate independence. We propose an\nestimator of the density of the signal for which we provide rates of\nconvergence, and prove that it reaches the minimax rate in the case where the\nsupport of the signal is compact. Additionally, we propose a model selection\nprocedure for adaptive estimation. Numerical simulations demonstrate the\neffectiveness of our approach even with limited sample sizes.","PeriodicalId":501379,"journal":{"name":"arXiv - STAT - Statistics Theory","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advances have demonstrated the possibility of solving the deconvolution problem without prior knowledge of the noise distribution. In this paper, we study the repeated measurements model, where information is derived from multiple measurements of X perturbed independently by additive errors. Our contributions include establishing identifiability without any assumption on the noise except for coordinate independence. We propose an estimator of the density of the signal for which we provide rates of convergence, and prove that it reaches the minimax rate in the case where the support of the signal is compact. Additionally, we propose a model selection procedure for adaptive estimation. Numerical simulations demonstrate the effectiveness of our approach even with limited sample sizes.
对受未知噪声干扰的重复测量进行解卷积
最近的研究进展证明,在不预先知道噪声分布的情况下,也有可能解决解卷积问题。在本文中,我们研究了重复测量模型,该模型中的信息来自于受到加性干扰独立扰动的 X 的多次测量。我们的贡献包括:除了坐标独立性之外,在不对噪声做任何假设的情况下建立了可识别性。我们提出了一种信号密度的估计方法,并提供了收敛率,证明在信号支持紧凑的情况下,它能达到最小收敛率。此外,我们还提出了自适应估计的模型选择程序。数值模拟证明了我们的方法即使在样本量有限的情况下也是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信