Personalized and uncertainty-aware coronary hemodynamics simulations: From Bayesian estimation to improved multi-fidelity uncertainty quantification

Karthik Menon, Andrea Zanoni, Owais Khan, Gianluca Geraci, Koen Nieman, Daniele E. Schiavazzi, Alison L. Marsden
{"title":"Personalized and uncertainty-aware coronary hemodynamics simulations: From Bayesian estimation to improved multi-fidelity uncertainty quantification","authors":"Karthik Menon, Andrea Zanoni, Owais Khan, Gianluca Geraci, Koen Nieman, Daniele E. Schiavazzi, Alison L. Marsden","doi":"arxiv-2409.02247","DOIUrl":null,"url":null,"abstract":"Simulations of coronary hemodynamics have improved non-invasive clinical risk\nstratification and treatment outcomes for coronary artery disease, compared to\nrelying on anatomical imaging alone. However, simulations typically use\nempirical approaches to distribute total coronary flow amongst the arteries in\nthe coronary tree. This ignores patient variability, the presence of disease,\nand other clinical factors. Further, uncertainty in the clinical data often\nremains unaccounted for in the modeling pipeline. We present an end-to-end\nuncertainty-aware pipeline to (1) personalize coronary flow simulations by\nincorporating branch-specific coronary flows as well as cardiac function; and\n(2) predict clinical and biomechanical quantities of interest with improved\nprecision, while accounting for uncertainty in the clinical data. We assimilate\npatient-specific measurements of myocardial blood flow from CT myocardial\nperfusion imaging to estimate branch-specific coronary flows. We use adaptive\nMarkov Chain Monte Carlo sampling to estimate the joint posterior distributions\nof model parameters with simulated noise in the clinical data. Additionally, we\ndetermine the posterior predictive distribution for relevant quantities of\ninterest using a new approach combining multi-fidelity Monte Carlo estimation\nwith non-linear, data-driven dimensionality reduction. Our framework\nrecapitulates clinically measured cardiac function as well as branch-specific\ncoronary flows under measurement uncertainty. We substantially shrink the\nconfidence intervals for estimated quantities of interest compared to\nsingle-fidelity and state-of-the-art multi-fidelity Monte Carlo methods. This\nis especially true for quantities that showed limited correlation between the\nlow- and high-fidelity model predictions. Moreover, the proposed estimators are\nsignificantly cheaper to compute for a specified confidence level or variance.","PeriodicalId":501379,"journal":{"name":"arXiv - STAT - Statistics Theory","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Simulations of coronary hemodynamics have improved non-invasive clinical risk stratification and treatment outcomes for coronary artery disease, compared to relying on anatomical imaging alone. However, simulations typically use empirical approaches to distribute total coronary flow amongst the arteries in the coronary tree. This ignores patient variability, the presence of disease, and other clinical factors. Further, uncertainty in the clinical data often remains unaccounted for in the modeling pipeline. We present an end-to-end uncertainty-aware pipeline to (1) personalize coronary flow simulations by incorporating branch-specific coronary flows as well as cardiac function; and (2) predict clinical and biomechanical quantities of interest with improved precision, while accounting for uncertainty in the clinical data. We assimilate patient-specific measurements of myocardial blood flow from CT myocardial perfusion imaging to estimate branch-specific coronary flows. We use adaptive Markov Chain Monte Carlo sampling to estimate the joint posterior distributions of model parameters with simulated noise in the clinical data. Additionally, we determine the posterior predictive distribution for relevant quantities of interest using a new approach combining multi-fidelity Monte Carlo estimation with non-linear, data-driven dimensionality reduction. Our framework recapitulates clinically measured cardiac function as well as branch-specific coronary flows under measurement uncertainty. We substantially shrink the confidence intervals for estimated quantities of interest compared to single-fidelity and state-of-the-art multi-fidelity Monte Carlo methods. This is especially true for quantities that showed limited correlation between the low- and high-fidelity model predictions. Moreover, the proposed estimators are significantly cheaper to compute for a specified confidence level or variance.
个性化和不确定性感知的冠状动脉血流动力学模拟:从贝叶斯估计到改进的多保真度不确定性量化
与仅依靠解剖成像相比,冠状动脉血流动力学模拟改善了冠状动脉疾病的无创临床风险分级和治疗效果。然而,模拟通常使用经验方法在冠状动脉树中分配冠状动脉总流量。这忽略了患者的可变性、疾病的存在以及其他临床因素。此外,在建模过程中,临床数据的不确定性往往没有考虑在内。我们提出了一种端到端不确定性感知管道,以便:(1) 通过纳入特定冠状动脉分支的血流以及心脏功能,对冠状动脉血流进行个性化模拟;(2) 在考虑临床数据不确定性的同时,以更高的精度预测临床和生物力学相关量。我们从 CT 心肌灌注成像中同化了特定患者的心肌血流测量数据,以估算特定分支的冠状动脉血流。我们使用自适应马尔可夫链蒙特卡洛抽样来估计模型参数的联合后验分布,并模拟临床数据中的噪声。此外,我们还采用一种新方法,将多保真度蒙特卡罗估计与非线性、数据驱动的降维相结合,确定了相关感兴趣量的后验预测分布。我们的框架重现了临床测量的心脏功能,以及在测量不确定性条件下的特异性冠状动脉血流。与单保真度蒙特卡罗方法和最先进的多保真度蒙特卡罗方法相比,我们大幅缩小了相关估计量的置信区间。这对于低保真和高保真模型预测之间相关性有限的量来说尤其如此。此外,对于指定的置信度或方差,所提出的估计器的计算成本明显更低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信