Lie affgebras vis-à-vis Lie algebras

Ryszard R. Andruszkiewicz, Tomasz Brzeziński, Krzysztof Radziszewski
{"title":"Lie affgebras vis-à-vis Lie algebras","authors":"Ryszard R. Andruszkiewicz, Tomasz Brzeziński, Krzysztof Radziszewski","doi":"arxiv-2409.01996","DOIUrl":null,"url":null,"abstract":"It is shown that any Lie affgebra, that is an algebraic system consisting of\nan affine space together with a bi-affine bracket satisfying affine versions of\nthe antisymmetry and Jacobi identity, is isomorphic to a Lie algebra together\nwith an element and a specific generalised derivation (in the sense of Leger\nand Luks, [G.F.\\ Leger \\& E.M.\\ Luks, Generalized derivations of Lie algebras,\n{\\em J.\\ Algebra} {\\bf 228} (2000), 165--203]). These Lie algebraic data can be\ntaken for the construction of a Lie affgebra or, conversely, they can be\nuniquely derived for any Lie algebra fibre of the Lie affgebra. The close\nrelationship between Lie affgebras and (enriched by the additional data) Lie\nalgebras can be employed to attempt a classification of the former by the\nlatter. In particular, up to isomorphism, a complex Lie affgebra with a simple\nLie algebra fibre $\\mathfrak{g}$ is fully determined by a scalar and an element\nof $\\mathfrak{g}$ fixed up to an automorphism of $\\mathfrak{g}$, and it can be\nuniversally embedded in a trivial extension of $\\mathfrak{g}$ by a derivation.\nThe study is illustrated by a number of examples that include all Lie affgebras\nwith one-dimensional, nonabelian two-dimensional,\n$\\mathfrak{s}\\mathfrak{l}(2,\\mathbb{C})$ and $\\mathfrak{s}\\mathfrak{o}(3)$\nfibres. Extensions of Lie affgebras by cocycles and their relation to cocycle\nextensions of tangent Lie algebras is briefly discussed too.","PeriodicalId":501136,"journal":{"name":"arXiv - MATH - Rings and Algebras","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Rings and Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

It is shown that any Lie affgebra, that is an algebraic system consisting of an affine space together with a bi-affine bracket satisfying affine versions of the antisymmetry and Jacobi identity, is isomorphic to a Lie algebra together with an element and a specific generalised derivation (in the sense of Leger and Luks, [G.F.\ Leger \& E.M.\ Luks, Generalized derivations of Lie algebras, {\em J.\ Algebra} {\bf 228} (2000), 165--203]). These Lie algebraic data can be taken for the construction of a Lie affgebra or, conversely, they can be uniquely derived for any Lie algebra fibre of the Lie affgebra. The close relationship between Lie affgebras and (enriched by the additional data) Lie algebras can be employed to attempt a classification of the former by the latter. In particular, up to isomorphism, a complex Lie affgebra with a simple Lie algebra fibre $\mathfrak{g}$ is fully determined by a scalar and an element of $\mathfrak{g}$ fixed up to an automorphism of $\mathfrak{g}$, and it can be universally embedded in a trivial extension of $\mathfrak{g}$ by a derivation. The study is illustrated by a number of examples that include all Lie affgebras with one-dimensional, nonabelian two-dimensional, $\mathfrak{s}\mathfrak{l}(2,\mathbb{C})$ and $\mathfrak{s}\mathfrak{o}(3)$ fibres. Extensions of Lie affgebras by cocycles and their relation to cocycle extensions of tangent Lie algebras is briefly discussed too.
李代数与李代数的关系
研究表明,任何李代数,即由仿射空间和满足仿射版本的反对称性和雅可比同一性的双仿射括号组成的代数系统,与一个元素和一个特定的广义推导(在Legerand Luks, [G.F.Leger & E.M.Luks, Generalized derivations of Lie algebras, {\em J.\ Algebra} (2000, 165--203)] 的意义上)同构于一个李代数。{\bf 228} (2000), 165--203]).这些列代数数据可以用来构造列代数,或者反过来,它们可以唯一地推导出列代数的任何列代数纤维。可以利用李代数和(通过附加数据丰富的)李代数之间的密切关系,尝试用后者对前者进行分类。特别是,直到同构为止,具有简单李代数纤维 $\mathfrak{g}$ 的复李代数完全由标量和 $\mathfrak{g}$ 的一个元素决定,并且它可以通过派生被普遍地嵌入到 $\mathfrak{g}$ 的一个微不足道的扩展中。本研究通过一些例子来说明,这些例子包括所有具有一维、非阿贝尔二维、$\mathfrak{s}\mathfrak{l}(2,\mathbb{C})$和$\mathfrak{s}\mathfrak{o}(3)$纤维的李代数。此外,我们还简要地讨论了李代数的环扩展及其与切李代数的环扩展的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信