Bounded skew power series rings for inner $σ$-derivations

Adam Jones, William Woods
{"title":"Bounded skew power series rings for inner $σ$-derivations","authors":"Adam Jones, William Woods","doi":"arxiv-2408.10545","DOIUrl":null,"url":null,"abstract":"We define and explore the bounded skew power series ring\n$R^+[[x;\\sigma,\\delta]]$ defined over a complete, filtered, Noetherian prime\nring $R$ with a commuting skew derivation $(\\sigma,\\delta)$. We establish\nprecise criteria for when this ring is well-defined, and for an appropriate\ncompletion $Q$ of $Q(R)$, we prove that if $Q$ has characteristic $p$, $\\delta$\nis an inner $\\sigma$-derivation and no positive power of $\\sigma$ is inner as\nan automorphism of $Q$, then $Q^+[[x;\\sigma,\\delta]]$ is often prime, and even\nsimple under certain mild restrictions on $\\delta$. It follows from this result\nthat $R^+[[x;\\sigma,\\delta]]$ is itself prime.","PeriodicalId":501136,"journal":{"name":"arXiv - MATH - Rings and Algebras","volume":"143 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Rings and Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.10545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We define and explore the bounded skew power series ring $R^+[[x;\sigma,\delta]]$ defined over a complete, filtered, Noetherian prime ring $R$ with a commuting skew derivation $(\sigma,\delta)$. We establish precise criteria for when this ring is well-defined, and for an appropriate completion $Q$ of $Q(R)$, we prove that if $Q$ has characteristic $p$, $\delta$ is an inner $\sigma$-derivation and no positive power of $\sigma$ is inner as an automorphism of $Q$, then $Q^+[[x;\sigma,\delta]]$ is often prime, and even simple under certain mild restrictions on $\delta$. It follows from this result that $R^+[[x;\sigma,\delta]]$ is itself prime.
内$σ$衍生的有界偏斜幂级数环
我们定义并探索了有界偏斜幂级数环$R^+[[x;\sigma,\delta]]$,它定义在一个完整的、过滤的、具有交换偏斜导数$(\sigma,\delta)$的诺特引元$R$上。对于 $Q(R)$的适当补集 $Q$,我们证明如果 $Q$ 有特征 $p$,$\delta$ 是内 $\sigma$派生,并且没有 $\sigma$ 的正幂作为 $Q$ 的内自变量,那么 $Q^+[[x;\sigma,\delta]]$ 通常是素数,甚至在对 $\delta$ 的某些温和限制下是简单的。从这个结果可以得出 $R^+[[x;\sigma,\delta]]$ 本身是素数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信