A contramodule generalization of Neeman's flat and projective module theorem

Leonid Positselski
{"title":"A contramodule generalization of Neeman's flat and projective module theorem","authors":"Leonid Positselski","doi":"arxiv-2408.10928","DOIUrl":null,"url":null,"abstract":"This paper builds on top of arXiv:2306.02734. We consider a complete,\nseparated topological ring $\\mathfrak R$ with a countable base of neighborhoods\nof zero consisting of open two-sided ideals. The main result is that the\nhomotopy category of projective left $\\mathfrak R$-contramodules is equivalent\nto the derived category of the exact category of flat left $\\mathfrak\nR$-contramodules. In other words, a complex of flat $\\mathfrak R$-contramodules\nis contraacyclic in the sense of Becker if and only if it is an acyclic complex\nwith flat $\\mathfrak R$-contramodules of cocycles.","PeriodicalId":501136,"journal":{"name":"arXiv - MATH - Rings and Algebras","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Rings and Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.10928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper builds on top of arXiv:2306.02734. We consider a complete, separated topological ring $\mathfrak R$ with a countable base of neighborhoods of zero consisting of open two-sided ideals. The main result is that the homotopy category of projective left $\mathfrak R$-contramodules is equivalent to the derived category of the exact category of flat left $\mathfrak R$-contramodules. In other words, a complex of flat $\mathfrak R$-contramodules is contraacyclic in the sense of Becker if and only if it is an acyclic complex with flat $\mathfrak R$-contramodules of cocycles.
尼曼平面和射影模定理的等模概化
本文建立在 arXiv:2306.02734 的基础之上。我们考虑了一个完整的、分离的拓扑环 $\mathfrak R$,它有一个由开放的两面理想组成的零邻域的可数基。主要结果是投影左$\mathfrak R$-contramodules 的同调范畴等价于平面左$\mathfrak R$-contramodules 的精确范畴的派生范畴。换句话说,当且仅当一个平面$\mathfrak R$-contramodules 的复数是一个具有平面$\mathfrak R$-contramodules 的共环的无环复数时,它才是贝克尔意义上的反循环复数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信