Quadratic algebras and idempotent braided sets

Tatiana Gateva-Ivanova, Shahn Majid
{"title":"Quadratic algebras and idempotent braided sets","authors":"Tatiana Gateva-Ivanova, Shahn Majid","doi":"arxiv-2409.02939","DOIUrl":null,"url":null,"abstract":"We study the Yang-Baxter algebras $A(K,X,r)$ associated to finite\nset-theoretic solutions $(X,r)$ of the braid relations. We introduce an\nequivalent set of quadratic relations $\\Re\\subseteq G$, where $G$ is the\nreduced Gr\\\"obner basis of $(\\Re)$. We show that if $(X,r)$ is\nleft-nondegenerate and idempotent then $\\Re= G$ and the Yang-Baxter algebra is\nPBW. We use graphical methods to study the global dimension of PBW algebras in\nthe $n$-generated case and apply this to Yang-Baxter algebras in the\nleft-nondegenerate idempotent case. We study the $d$-Veronese subalgebras for a\nclass of quadratic algebras and use this to show that for $(X,r)$\nleft-nondegenerate idempotent, the $d$-Veronese subalgebra $A(K,X,r)^{(d)}$ can\nbe identified with $A(K,X,r^{(d)})$, where $(X,r^{(d)})$ are all\nleft-nondegenerate idempotent solutions. We determined the Segre product in the\nleft-nondegenerate idempotent setting. Our results apply to a previously\nstudied class of `permutation idempotent' solutions, where we show that all\ntheir Yang-Baxter algebras for a given cardinality of $X$ are isomorphic and\nare isomorphic to their $d$-Veronese subalgebras. In the linearised setting, we\nconstruct the Koszul dual of the Yang-Baxter algebra and the Nichols-Woronowicz\nalgebra in the idempotent case, showing that the latter is quadratic. We also\nconstruct noncommutative differentials on some of these quadratic algebras.","PeriodicalId":501136,"journal":{"name":"arXiv - MATH - Rings and Algebras","volume":"74 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Rings and Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the Yang-Baxter algebras $A(K,X,r)$ associated to finite set-theoretic solutions $(X,r)$ of the braid relations. We introduce an equivalent set of quadratic relations $\Re\subseteq G$, where $G$ is the reduced Gr\"obner basis of $(\Re)$. We show that if $(X,r)$ is left-nondegenerate and idempotent then $\Re= G$ and the Yang-Baxter algebra is PBW. We use graphical methods to study the global dimension of PBW algebras in the $n$-generated case and apply this to Yang-Baxter algebras in the left-nondegenerate idempotent case. We study the $d$-Veronese subalgebras for a class of quadratic algebras and use this to show that for $(X,r)$ left-nondegenerate idempotent, the $d$-Veronese subalgebra $A(K,X,r)^{(d)}$ can be identified with $A(K,X,r^{(d)})$, where $(X,r^{(d)})$ are all left-nondegenerate idempotent solutions. We determined the Segre product in the left-nondegenerate idempotent setting. Our results apply to a previously studied class of `permutation idempotent' solutions, where we show that all their Yang-Baxter algebras for a given cardinality of $X$ are isomorphic and are isomorphic to their $d$-Veronese subalgebras. In the linearised setting, we construct the Koszul dual of the Yang-Baxter algebra and the Nichols-Woronowicz algebra in the idempotent case, showing that the latter is quadratic. We also construct noncommutative differentials on some of these quadratic algebras.
二次代数和幂幂辫集
我们研究了与辫子关系的有限集理论解 $(X,r)$ 相关的杨-巴克斯特代数 $A(K,X,r)$。我们引入了一个等价的二次关系集合 $Re\subseteq G$,其中$G$是$(\Re)$的Gr\"obner基。我们证明,如果$(X,r)$是左非enerate和幂等的,那么$\Re= G$和Yang-Baxter代数是PBW。我们用图形方法研究了在 $n$ 生成情况下 PBW 代数的全维,并将其应用于左非enerate idempotent 情况下的 Yang-Baxter 代数。我们研究了一类二次代数的 $d$-Veronese 子代数,并以此证明对于 $(X,r)$ 左非enerate idempotent,$d$-Veronese 子代数 $A(K,X,r)^{(d)}$ 可以与 $A(K,X,r^{(d)})$相鉴别,其中 $(X,r^{(d)})$ 是所有左非enerate idempotent 解。我们确定了左非整立幂等解中的塞格雷积。我们的结果适用于之前研究过的一类 "迭代empotent "解,我们证明了它们在给定的$X$心数下的所有杨-巴克斯特代数都是同构的,并且与它们的$d$-Veronese子代数同构。在线性化设置中,我们构建了杨-巴克斯特代数的科斯祖尔对偶和幂等情况下的尼科尔斯-沃罗诺维奇代数,并证明后者是二次的。我们还在其中一些二次方程组上构建了非交换微分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信