On Semi-Nil Clean Rings with Applications

M. H. Bien, P. V. Danchev, M. Ramezan-Nassab
{"title":"On Semi-Nil Clean Rings with Applications","authors":"M. H. Bien, P. V. Danchev, M. Ramezan-Nassab","doi":"arxiv-2408.13164","DOIUrl":null,"url":null,"abstract":"We investigate the notion of \\textit{semi-nil clean} rings, defined as those\nrings in which each element can be expressed as a sum of a periodic and a\nnilpotent element. Among our results, we show that if $R$ is a semi-nil clean\nring that is either NI or one-sided perfect, then $R$ is periodic.\nAdditionally, we demonstrate that every group ring $RG$ of a nilpotent group\n$G$ over a weakly 2-primal or one-sided perfect ring $R$ is semi-nil clean if\nand only if $R$ is periodic and $G$ is locally finite. Moreover, we also study those rings in which every unit is a sum of a\nperiodic and a nilpotent element, calling them \\textit{unit semi-nil clean}\nrings. As a remarkable result, we show that if $R$ is an algebraic algebra over\na field, then $R$ is unit semi-nil clean if and only if $R$ is periodic. Besides, we explore those rings in which non-zero elements are a sum of a\ntorsion element and a nilpotent element, naming them \\textit{t-fine} rings,\nwhich constitute a proper subclass of the class of all fine rings. One of the\nmain results is that matrix rings over t-fine rings are again t-fine rings.","PeriodicalId":501136,"journal":{"name":"arXiv - MATH - Rings and Algebras","volume":"78 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Rings and Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.13164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the notion of \textit{semi-nil clean} rings, defined as those rings in which each element can be expressed as a sum of a periodic and a nilpotent element. Among our results, we show that if $R$ is a semi-nil clean ring that is either NI or one-sided perfect, then $R$ is periodic. Additionally, we demonstrate that every group ring $RG$ of a nilpotent group $G$ over a weakly 2-primal or one-sided perfect ring $R$ is semi-nil clean if and only if $R$ is periodic and $G$ is locally finite. Moreover, we also study those rings in which every unit is a sum of a periodic and a nilpotent element, calling them \textit{unit semi-nil clean} rings. As a remarkable result, we show that if $R$ is an algebraic algebra over a field, then $R$ is unit semi-nil clean if and only if $R$ is periodic. Besides, we explore those rings in which non-zero elements are a sum of a torsion element and a nilpotent element, naming them \textit{t-fine} rings, which constitute a proper subclass of the class of all fine rings. One of the main results is that matrix rings over t-fine rings are again t-fine rings.
关于半无清洁环及其应用
我们研究了textit{semi-nil clean}环的概念,它被定义为其中每个元素都可以表示为周期元素和无钾元素之和的环。此外,我们还证明,当且仅当 $R$ 是周期性的且 $G$ 是局部有限的时候,在弱 2-原环或单边完全环 $R$ 上的零幂群 $G$ 的每个群环 $RG$ 都是半零纯环。此外,我们还研究了那些每个单元都是非周期元素与零幂元素之和的环,称它们为 \textit{unit semi-nil clean}rings 。作为一个重要结果,我们证明了如果 $R$ 是一个域上的代数代数,那么只有当且仅当 $R$ 是周期性的,$R$ 才是单元半零净的。此外,我们还探讨了那些非零元素是扭转元素与零势元素之和的环,并将它们命名为(textit{t-fine}环,它们构成了所有精细环类的一个适当子类。它们的主要结果之一是,t-细环上的矩阵环又是 t-细环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信