Nil modules and the envelope of a submodule

David Ssevviiri, Annet Kyomuhangi
{"title":"Nil modules and the envelope of a submodule","authors":"David Ssevviiri, Annet Kyomuhangi","doi":"arxiv-2408.16240","DOIUrl":null,"url":null,"abstract":"Let $R$ be a commutative unital ring and $N$ be a submodule of an $R$-module\n$M$. The submodule $\\langle E_M(N)\\rangle$ generated by the envelope $E_M(N)$\nof $N$ is instrumental in studying rings and modules that satisfy the radical\nformula. We show that: 1) the semiprime radical is an invariant on all the\nsubmodules which are respectively generated by envelopes in the ascending chain\nof envelopes of a given submodule; 2) for rings that satisfy the radical\nformula, $\\langle E_M(0)\\rangle$ is an idempotent radical and it induces a\ntorsion theory whose torsion class consists of all nil $R$-modules and the\ntorsionfree class consists of all reduced $R$-modules; 3) Noetherian uniserial\nmodules satisfy the semiprime radical formula and their semiprime radical is a\nnil module; and lastly, 4) we construct a sheaf of nil $R$-modules on\n$\\text{Spec}(R)$.","PeriodicalId":501136,"journal":{"name":"arXiv - MATH - Rings and Algebras","volume":"57 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Rings and Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.16240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $R$ be a commutative unital ring and $N$ be a submodule of an $R$-module $M$. The submodule $\langle E_M(N)\rangle$ generated by the envelope $E_M(N)$ of $N$ is instrumental in studying rings and modules that satisfy the radical formula. We show that: 1) the semiprime radical is an invariant on all the submodules which are respectively generated by envelopes in the ascending chain of envelopes of a given submodule; 2) for rings that satisfy the radical formula, $\langle E_M(0)\rangle$ is an idempotent radical and it induces a torsion theory whose torsion class consists of all nil $R$-modules and the torsionfree class consists of all reduced $R$-modules; 3) Noetherian uniserial modules satisfy the semiprime radical formula and their semiprime radical is a nil module; and lastly, 4) we construct a sheaf of nil $R$-modules on $\text{Spec}(R)$.
无模块和子模块包络
让 $R$ 是交换单素环,$N$ 是 $R$ 模块$M$ 的子模块。由 $N$ 的包络 $E_M(N)$ 产生的子模块 $/langle E_M(N)\rangle$ 在研究满足激元公式的环和模块时非常重要。我们证明1) 半根是所有子模块的不变量,这些子模块分别由给定子模块的升序包络链中的包络生成;2) 对于满足根式的环,$\langle E_M(0)\rangle$ 是一个幂等根,它诱导扭转理论,其扭转类包括所有零$R$模块,无扭转类包括所有还原$R$模块;最后,4)我们在$text{Spec}(R)$上构造了一个零$R$模块的 Sheaf。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信