(Semi)topological $K$-theory via solidification

Ko Aoki
{"title":"(Semi)topological $K$-theory via solidification","authors":"Ko Aoki","doi":"arxiv-2409.01462","DOIUrl":null,"url":null,"abstract":"Clausen--Scholze introduced the notion of solid spectrum in their condensed\nmathematics program. We demonstrate that the solidification of algebraic\n$K$-theory recovers two known constructions: the semitopological $K$-theory of\na real (associative) algebra and the topological (aka operator) $K$-theory of a\nreal Banach algebra.","PeriodicalId":501136,"journal":{"name":"arXiv - MATH - Rings and Algebras","volume":"75 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Rings and Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Clausen--Scholze introduced the notion of solid spectrum in their condensed mathematics program. We demonstrate that the solidification of algebraic $K$-theory recovers two known constructions: the semitopological $K$-theory of a real (associative) algebra and the topological (aka operator) $K$-theory of a real Banach algebra.
(通过固化的(半)拓扑 $K$ 理论
克劳森-肖尔泽在他们的凝聚数学项目中引入了实体谱的概念。我们证明,代数$K$理论的固化恢复了两个已知的构造:实(关联)代数的半拓扑$K$理论和等价巴拿赫代数的拓扑(又称算子)$K$理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信