Extended Karpenko and Karpenko-Merkurjev theorems for quasilinear quadratic forms

Stephen Scully
{"title":"Extended Karpenko and Karpenko-Merkurjev theorems for quasilinear quadratic forms","authors":"Stephen Scully","doi":"arxiv-2409.02059","DOIUrl":null,"url":null,"abstract":"Let $p$ and $q$ be anisotropic quasilinear quadratic forms over a field $F$\nof characteristic $2$, and let $i$ be the isotropy index of $q$ after scalar\nextension to the function field of the affine quadric with equation $p=0$. In\nthis article, we establish a strong constraint on $i$ in terms of the dimension\nof $q$ and two stable birational invariants of $p$, one of which is the\nwell-known \"Izhboldin dimension\", and the other of which is a new invariant\nthat we denote $\\Delta(p)$. Examining the contribution from the Izhboldin\ndimension, we obtain a result that unifies and extends the quasilinear\nanalogues of two fundamental results on the isotropy of non-singular quadratic\nforms over function fields of quadrics in arbitrary characteristic due to\nKarpenko and Karpenko-Merkurjev, respectively. This proves in a strong way the\nquasilinear case of a general conjecture previously formulated by the author,\nsuggesting that a substantial refinement of this conjecture should hold.","PeriodicalId":501136,"journal":{"name":"arXiv - MATH - Rings and Algebras","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Rings and Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $p$ and $q$ be anisotropic quasilinear quadratic forms over a field $F$ of characteristic $2$, and let $i$ be the isotropy index of $q$ after scalar extension to the function field of the affine quadric with equation $p=0$. In this article, we establish a strong constraint on $i$ in terms of the dimension of $q$ and two stable birational invariants of $p$, one of which is the well-known "Izhboldin dimension", and the other of which is a new invariant that we denote $\Delta(p)$. Examining the contribution from the Izhboldin dimension, we obtain a result that unifies and extends the quasilinear analogues of two fundamental results on the isotropy of non-singular quadratic forms over function fields of quadrics in arbitrary characteristic due to Karpenko and Karpenko-Merkurjev, respectively. This proves in a strong way the quasilinear case of a general conjecture previously formulated by the author, suggesting that a substantial refinement of this conjecture should hold.
准线性二次型的扩展卡尔彭科定理和卡尔彭科-梅尔库热夫定理
设 $p$ 和 $q$ 是在特征为 2$ 的域 $F$ 上的各向异性准线性二次型,并设 $i$ 是 $q$ 在等式为 $p=0$ 的仿射二次型的函数域中进行标量扩展后的各向同性指数。在这篇文章中,我们根据$q$的维数和$p$的两个稳定的双向不变式对$i$建立了一个强约束,其中一个是众所周知的 "伊兹博尔丁维",另一个是我们命名为$\Delta(p)$的新不变式。通过研究伊兹博尔德维度的贡献,我们得到了一个结果,它统一并扩展了分别由卡尔彭科(Karpenko)和卡尔彭科-梅库尔杰夫(Karpenko-Merkurjev)提出的关于任意特征四元数函数场上非正弦二次形的各向同性的两个基本结果的准线性相似性。这有力地证明了作者先前提出的一般猜想的二次线性情况,表明这一猜想的实质性完善应该成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信