On the holes in $I^n$ for symmetric bilinear forms in characteristic 2

Stephen Scully
{"title":"On the holes in $I^n$ for symmetric bilinear forms in characteristic 2","authors":"Stephen Scully","doi":"arxiv-2409.02061","DOIUrl":null,"url":null,"abstract":"Let $F$ be a field. Following the resolution of Milnor's conjecture relating\nthe graded Witt ring of $F$ to its mod-2 Milnor $K$-theory, a major problem in\nthe theory of symmetric bilinear forms is to understand, for any positive\ninteger $n$, the low-dimensional part of $I^n(F)$, the $n$th power of the\nfundamental ideal in the Witt ring of $F$. In a 2004 paper, Karpenko used\nmethods from the theory of algebraic cycles to show that if $\\mathfrak{b}$ is a\nnon-zero anisotropic symmetric bilinear form of dimension $< 2^{n+1}$\nrepresenting an element of $I^n(F)$, then $\\mathfrak{b}$ has dimension $2^{n+1}\n- 2^i$ for some $1 \\leq i \\leq n$. When $i = n$, a classical result of Arason\nand Pfister says that $\\mathfrak{b}$ is similar to an $n$-fold Pfister form. At\nthe next level, it has been conjectured that if $n \\geq 2$ and $i= n-1$, then\n$\\mathfrak{b}$ is isometric to the tensor product of an $(n-2)$-fold Pfister\nform and a $6$-dimensional form of trivial discriminant. This has only been\nshown to be true, however, when $n = 2$, or when $n = 3$ and $\\mathrm{char}(F)\n\\neq 2$ (another result of Pfister). In the present article, we prove the\nconjecture for all values of $n$ in the case where $\\mathrm{char}(F) =2$. In\naddition, we give a short and elementary proof of Karpenko's theorem in the\ncharacteristic-2 case, rendering it free from the use of subtle\nalgebraic-geometric tools. Finally, we consider the question of whether\nadditional dimension gaps can appear among the anisotropic forms of dimension\n$\\geq 2^{n+1}$ representing an element of $I^n(F)$. When $\\mathrm{char}(F) \\neq\n2$, a result of Vishik asserts that there are no such gaps, but the situation\nseems to be less clear when $\\mathrm{char}(F) = 2$.","PeriodicalId":501136,"journal":{"name":"arXiv - MATH - Rings and Algebras","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Rings and Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $F$ be a field. Following the resolution of Milnor's conjecture relating the graded Witt ring of $F$ to its mod-2 Milnor $K$-theory, a major problem in the theory of symmetric bilinear forms is to understand, for any positive integer $n$, the low-dimensional part of $I^n(F)$, the $n$th power of the fundamental ideal in the Witt ring of $F$. In a 2004 paper, Karpenko used methods from the theory of algebraic cycles to show that if $\mathfrak{b}$ is a non-zero anisotropic symmetric bilinear form of dimension $< 2^{n+1}$ representing an element of $I^n(F)$, then $\mathfrak{b}$ has dimension $2^{n+1} - 2^i$ for some $1 \leq i \leq n$. When $i = n$, a classical result of Arason and Pfister says that $\mathfrak{b}$ is similar to an $n$-fold Pfister form. At the next level, it has been conjectured that if $n \geq 2$ and $i= n-1$, then $\mathfrak{b}$ is isometric to the tensor product of an $(n-2)$-fold Pfister form and a $6$-dimensional form of trivial discriminant. This has only been shown to be true, however, when $n = 2$, or when $n = 3$ and $\mathrm{char}(F) \neq 2$ (another result of Pfister). In the present article, we prove the conjecture for all values of $n$ in the case where $\mathrm{char}(F) =2$. In addition, we give a short and elementary proof of Karpenko's theorem in the characteristic-2 case, rendering it free from the use of subtle algebraic-geometric tools. Finally, we consider the question of whether additional dimension gaps can appear among the anisotropic forms of dimension $\geq 2^{n+1}$ representing an element of $I^n(F)$. When $\mathrm{char}(F) \neq 2$, a result of Vishik asserts that there are no such gaps, but the situation seems to be less clear when $\mathrm{char}(F) = 2$.
论特征 2 中对称双线性形式的 $I^n$ 中的洞
让 $F$ 是一个域。在解决了米尔诺关于 $F$ 的有级维特环及其模-2 米尔诺 $K$ 理论的猜想之后,对称双线性形式理论的一个主要问题是,对于任意正整数 $n$,如何理解 $I^n(F)$的低维部分,即 $F$ 的维特环中基本理想的第 n 次幂。在 2004 年的一篇论文中,卡尔彭科使用代数循环理论的方法证明,如果 $mathfrak{b}$ 是维度 $< 2^{n+1}$ 的非零各向异性对称双线性方程形式,代表 $I^n(F)$ 的一个元素,那么对于某个 1 \leq i \leq n$,$mathfrak{b}$ 的维度为 2^{n+1}- 2^i$。当 $i = n$ 时,阿拉森和普菲斯特的一个经典结果表明 $\mathfrak{b}$ 类似于一个 $n$ 折叠的普菲斯特形式。在下一个层次上,有人猜想,如果 $n \geq 2$ 并且 $i= n-1$,那么 $mathfrak{b}$ 与 $(n-2)$ fold Pfister form 和一个具有微分判别式的 $6$ 维形式的张量积是等距的。然而,这只有在 $n = 2$ 或 $n = 3$ 且 $\mathrm{char}(F)\neq 2$ 时(普菲斯特的另一个结果)才被证明是正确的。在本文中,我们证明了在 $\mathrm{char}(F) =2$ 的情况下所有 $n$ 值的猜想。此外,我们还给出了卡尔彭科定理在特征-2情况下的简短而基本的证明,使其无需使用微妙的代数几何工具。最后,我们考虑了在代表 $I^n(F)$ 的元素的各向异性形式中是否会出现额外维数差距的问题。当$\mathrm{char}(F) \neq2$时,Vishik的一个结果断言不存在这样的差距,但当$\mathrm{char}(F) = 2$时,情况似乎就不那么清楚了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信