Admissible groups over number fields

Deependra Singh
{"title":"Admissible groups over number fields","authors":"Deependra Singh","doi":"arxiv-2409.02333","DOIUrl":null,"url":null,"abstract":"Given a field K, one may ask which finite groups are Galois groups of field\nextensions L/K such that L is a maximal subfield of a division algebra with\ncenter K. This connection between inverse Galois theory and division algebras\nwas first explored by Schacher in the 1960s. In this manuscript we consider\nthis problem when K is a number field. For the case when L/K is assumed to be\ntamely ramified, we give a complete classification of number fields for which\nevery solvable Sylow-metacyclic group is admissible, extending J. Sonn's result\nover the field of rational numbers. For the case when L/K is allowed to be\nwildly ramified, we give a characterization of admissible groups over several\nclasses of number fields, and partial results in other cases.","PeriodicalId":501136,"journal":{"name":"arXiv - MATH - Rings and Algebras","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Rings and Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Given a field K, one may ask which finite groups are Galois groups of field extensions L/K such that L is a maximal subfield of a division algebra with center K. This connection between inverse Galois theory and division algebras was first explored by Schacher in the 1960s. In this manuscript we consider this problem when K is a number field. For the case when L/K is assumed to be tamely ramified, we give a complete classification of number fields for which every solvable Sylow-metacyclic group is admissible, extending J. Sonn's result over the field of rational numbers. For the case when L/K is allowed to be wildly ramified, we give a characterization of admissible groups over several classes of number fields, and partial results in other cases.
数域上的可容许群
给定一个域 K,我们可能会问,哪些有限群是域扩展 L/K 的伽罗瓦群,从而使 L 成为以 K 为中心的除法代数的最大子域?在本手稿中,我们考虑的是 K 为数域时的问题。对于假定 L/K 完全夯化的情况,我们给出了一个完整的数域分类,对于这些数域,每个可解的 Sylow-metacyclic 群都是可容许的,从而扩展了 J. Sonn 在有理数域上的结果。对于允许 L/K 任意横切的情况,我们给出了几类数域上可容许群的特征,并给出了其他情况下的部分结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信