Inductive description of quadratic Hom-Lie algebras with twist maps in the centroid

R. García-Delgado
{"title":"Inductive description of quadratic Hom-Lie algebras with twist maps in the centroid","authors":"R. García-Delgado","doi":"arxiv-2409.04546","DOIUrl":null,"url":null,"abstract":"In this work we give an inductive way to construct quadratic Hom-Lie algebras\nwith twist maps in the centroid. We focus on those Hom-Lie algebras that are\nnot Lie algebras. We prove that the twist map of a Hom-Lie algebra of this type\nmust be nilpotent and the Hom-Lie algebra has trivial center. We also prove\nthat there exists a maximal ideal containing the kernel and the image of the\ntwist map. Then we state an inductive way to construct this type of Hom-Lie\nalgebras -- similar to the double extension procedure for Lie algebras -- and\nprove that any indecomposable quadratic Hom-Lie algebra with nilpotent twist\nmap in the centroid, which is not a Lie algebra, can be constructed using this\ntype of double extension.","PeriodicalId":501136,"journal":{"name":"arXiv - MATH - Rings and Algebras","volume":"57 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Rings and Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work we give an inductive way to construct quadratic Hom-Lie algebras with twist maps in the centroid. We focus on those Hom-Lie algebras that are not Lie algebras. We prove that the twist map of a Hom-Lie algebra of this type must be nilpotent and the Hom-Lie algebra has trivial center. We also prove that there exists a maximal ideal containing the kernel and the image of the twist map. Then we state an inductive way to construct this type of Hom-Lie algebras -- similar to the double extension procedure for Lie algebras -- and prove that any indecomposable quadratic Hom-Lie algebra with nilpotent twist map in the centroid, which is not a Lie algebra, can be constructed using this type of double extension.
具有中心扭曲映射的二次Hom-Lie代数的归纳描述
在这项工作中,我们给出了一种归纳方法,用于构建在中心点上具有扭转映射的二次Hom-Lie代数。我们关注的是那些非李代数的同李代数。我们证明,这种类型的 Hom-Lie 代数的扭转映射必须是零势的,而且 Hom-Lie 代数有微不足道的中心。我们还证明存在一个包含扭转映射的核和象的最大理想。然后,我们阐述了构造这种类型的 Hom-Lie 代数的归纳法--类似于列代数的双重扩展过程--并证明了任何不可分解的四元 Hom-Lie 代数,其中心点上有零能捻图,并且不是列代数,都可以用这种类型的双重扩展来构造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信