Radicals in flip subalgebras

Bernardo G. Rodrigues, Sergey Shpectorov
{"title":"Radicals in flip subalgebras","authors":"Bernardo G. Rodrigues, Sergey Shpectorov","doi":"arxiv-2409.05236","DOIUrl":null,"url":null,"abstract":"We develop methods for determining key properties (simplicity and the\ndimension of radical) of flip subalgebras in Matsuo algebras. These are\ninteresting classes of commutative non-associative algebras that were\nintroduced within the broader paradigm of axial algebras.","PeriodicalId":501136,"journal":{"name":"arXiv - MATH - Rings and Algebras","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Rings and Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We develop methods for determining key properties (simplicity and the dimension of radical) of flip subalgebras in Matsuo algebras. These are interesting classes of commutative non-associative algebras that were introduced within the broader paradigm of axial algebras.
翻转子代数中的激元
我们开发了确定松尾代数中翻转子代数的关键性质(简单性和根维度)的方法。这些是在更广泛的轴代数范式中引入的换元非共轭代数的有趣类别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信