On the choice of the two tuning parameters for nonparametric estimation of an elliptical distribution generator

Victor Ryan, Alexis Derumigny
{"title":"On the choice of the two tuning parameters for nonparametric estimation of an elliptical distribution generator","authors":"Victor Ryan, Alexis Derumigny","doi":"arxiv-2408.17087","DOIUrl":null,"url":null,"abstract":"Elliptical distributions are a simple and flexible class of distributions\nthat depend on a one-dimensional function, called the density generator. In\nthis article, we study the non-parametric estimator of this generator that was\nintroduced by Liebscher (2005). This estimator depends on two tuning\nparameters: a bandwidth $h$ -- as usual in kernel smoothing -- and an\nadditional parameter $a$ that control the behavior near the center of the\ndistribution. We give an explicit expression for the asymptotic MSE at a point\n$x$, and derive explicit expressions for the optimal tuning parameters $h$ and\n$a$. Estimation of the derivatives of the generator is also discussed. A\nsimulation study shows the performance of the new methods.","PeriodicalId":501379,"journal":{"name":"arXiv - STAT - Statistics Theory","volume":"144 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.17087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Elliptical distributions are a simple and flexible class of distributions that depend on a one-dimensional function, called the density generator. In this article, we study the non-parametric estimator of this generator that was introduced by Liebscher (2005). This estimator depends on two tuning parameters: a bandwidth $h$ -- as usual in kernel smoothing -- and an additional parameter $a$ that control the behavior near the center of the distribution. We give an explicit expression for the asymptotic MSE at a point $x$, and derive explicit expressions for the optimal tuning parameters $h$ and $a$. Estimation of the derivatives of the generator is also discussed. A simulation study shows the performance of the new methods.
关于椭圆分布发生器非参数估计的两个调整参数的选择
椭圆分布是一类简单而灵活的分布,它取决于一个称为密度发生器的一维函数。在本文中,我们将研究 Liebscher(2005 年)提出的该生成器的非参数估计器。该估计器取决于两个调整参数:带宽 $h$ --与核平滑一样 --以及控制分布中心附近行为的附加参数 $a$。我们给出了一个点$x$的渐近 MSE 的明确表达式,并推导出最佳调整参数$h$和$a$的明确表达式。我们还讨论了生成器导数的估计。模拟研究显示了新方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信