Benign Overfitting for $α$ Sub-exponential Input

Kota Okudo, Kei Kobayashi
{"title":"Benign Overfitting for $α$ Sub-exponential Input","authors":"Kota Okudo, Kei Kobayashi","doi":"arxiv-2409.00733","DOIUrl":null,"url":null,"abstract":"This paper investigates the phenomenon of benign overfitting in binary\nclassification problems with heavy-tailed input distributions. We extend the\nanalysis of maximum margin classifiers to $\\alpha$ sub-exponential\ndistributions, where $\\alpha \\in (0,2]$, generalizing previous work that\nfocused on sub-gaussian inputs. Our main result provides generalization error\nbounds for linear classifiers trained using gradient descent on unregularized\nlogistic loss in this heavy-tailed setting. We prove that under certain\nconditions on the dimensionality $p$ and feature vector magnitude $\\|\\mu\\|$,\nthe misclassification error of the maximum margin classifier asymptotically\napproaches the noise level. This work contributes to the understanding of\nbenign overfitting in more robust distribution settings and demonstrates that\nthe phenomenon persists even with heavier-tailed inputs than previously\nstudied.","PeriodicalId":501379,"journal":{"name":"arXiv - STAT - Statistics Theory","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.00733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the phenomenon of benign overfitting in binary classification problems with heavy-tailed input distributions. We extend the analysis of maximum margin classifiers to $\alpha$ sub-exponential distributions, where $\alpha \in (0,2]$, generalizing previous work that focused on sub-gaussian inputs. Our main result provides generalization error bounds for linear classifiers trained using gradient descent on unregularized logistic loss in this heavy-tailed setting. We prove that under certain conditions on the dimensionality $p$ and feature vector magnitude $\|\mu\|$, the misclassification error of the maximum margin classifier asymptotically approaches the noise level. This work contributes to the understanding of benign overfitting in more robust distribution settings and demonstrates that the phenomenon persists even with heavier-tailed inputs than previously studied.
α$亚指数输入的良性过度拟合
本文研究了具有重尾输入分布的二元分类问题中的良性过拟合现象。我们将最大边际分类器的分析扩展到了 $\alpha$ 亚指数分布,其中 $\alpha \ in (0,2]$,这是对之前专注于亚高斯输入的工作的推广。我们的主要结果为在这种重尾情况下使用梯度下降非规则化逻辑损失训练的线性分类器提供了广义误差边界。我们证明,在维度 $p$ 和特征向量大小 $\|\mu\|$ 的特定条件下,最大边际分类器的误分类误差会渐近地接近噪声水平。这项工作有助于理解更稳健分布设置中的良性过拟合,并证明即使输入的尾部比以前研究的更重,这种现象也会持续存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信