Stein transport for Bayesian inference

Nikolas Nüsken
{"title":"Stein transport for Bayesian inference","authors":"Nikolas Nüsken","doi":"arxiv-2409.01464","DOIUrl":null,"url":null,"abstract":"We introduce $\\textit{Stein transport}$, a novel methodology for Bayesian\ninference designed to efficiently push an ensemble of particles along a\npredefined curve of tempered probability distributions. The driving vector\nfield is chosen from a reproducing kernel Hilbert space and can be derived\neither through a suitable kernel ridge regression formulation or as an\ninfinitesimal optimal transport map in the Stein geometry. The update equations\nof Stein transport resemble those of Stein variational gradient descent (SVGD),\nbut introduce a time-varying score function as well as specific weights\nattached to the particles. While SVGD relies on convergence in the long-time\nlimit, Stein transport reaches its posterior approximation at finite time\n$t=1$. Studying the mean-field limit, we discuss the errors incurred by\nregularisation and finite-particle effects, and we connect Stein transport to\nbirth-death dynamics and Fisher-Rao gradient flows. In a series of experiments,\nwe show that in comparison to SVGD, Stein transport not only often reaches more\naccurate posterior approximations with a significantly reduced computational\nbudget, but that it also effectively mitigates the variance collapse phenomenon\ncommonly observed in SVGD.","PeriodicalId":501379,"journal":{"name":"arXiv - STAT - Statistics Theory","volume":"144 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Statistics Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce $\textit{Stein transport}$, a novel methodology for Bayesian inference designed to efficiently push an ensemble of particles along a predefined curve of tempered probability distributions. The driving vector field is chosen from a reproducing kernel Hilbert space and can be derived either through a suitable kernel ridge regression formulation or as an infinitesimal optimal transport map in the Stein geometry. The update equations of Stein transport resemble those of Stein variational gradient descent (SVGD), but introduce a time-varying score function as well as specific weights attached to the particles. While SVGD relies on convergence in the long-time limit, Stein transport reaches its posterior approximation at finite time $t=1$. Studying the mean-field limit, we discuss the errors incurred by regularisation and finite-particle effects, and we connect Stein transport to birth-death dynamics and Fisher-Rao gradient flows. In a series of experiments, we show that in comparison to SVGD, Stein transport not only often reaches more accurate posterior approximations with a significantly reduced computational budget, but that it also effectively mitigates the variance collapse phenomenon commonly observed in SVGD.
贝叶斯推理的斯坦因传输
我们介绍了$\textit{Stein transport}$,这是一种用于贝叶斯推断的新方法,旨在有效地推动粒子集合沿着经过调和的概率分布的预定义曲线前进。驱动向量场选自再现核希尔伯特空间,既可以通过合适的核脊回归公式得到,也可以作为斯坦因几何中的无限最优传输图得到。斯坦因传输的更新方程与斯坦因变分梯度下降(SVGD)相似,但引入了时变分值函数以及粒子的特定权重。SVGD 依赖于在长时限内的收敛,而 Stein 传输则是在有限时间 t=1 美元时达到其后向近似值。在研究均场极限时,我们讨论了规则化和有限粒子效应引起的误差,并将斯坦因输运与出生-死亡动力学和费雪-拉奥梯度流联系起来。在一系列实验中,我们发现与 SVGD 相比,斯坦因输运不仅能在显著降低计算预算的情况下获得更精确的后验近似,而且还能有效缓解 SVGD 中常见的方差崩溃现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信