How DREAMS are made: Emulating Satellite Galaxy and Subhalo Populations with Diffusion Models and Point Clouds

Tri Nguyen, Francisco Villaescusa-Navarro, Siddharth Mishra-Sharma, Carolina Cuesta-Lazaro, Paul Torrey, Arya Farahi, Alex M. Garcia, Jonah C. Rose, Stephanie O'Neil, Mark Vogelsberger, Xuejian Shen, Cian Roche, Daniel Anglés-Alcázar, Nitya Kallivayalil, Julian B. Muñoz, Francis-Yan Cyr-Racine, Sandip Roy, Lina Necib, Kassidy E. Kollmann
{"title":"How DREAMS are made: Emulating Satellite Galaxy and Subhalo Populations with Diffusion Models and Point Clouds","authors":"Tri Nguyen, Francisco Villaescusa-Navarro, Siddharth Mishra-Sharma, Carolina Cuesta-Lazaro, Paul Torrey, Arya Farahi, Alex M. Garcia, Jonah C. Rose, Stephanie O'Neil, Mark Vogelsberger, Xuejian Shen, Cian Roche, Daniel Anglés-Alcázar, Nitya Kallivayalil, Julian B. Muñoz, Francis-Yan Cyr-Racine, Sandip Roy, Lina Necib, Kassidy E. Kollmann","doi":"arxiv-2409.02980","DOIUrl":null,"url":null,"abstract":"The connection between galaxies and their host dark matter (DM) halos is\ncritical to our understanding of cosmology, galaxy formation, and DM physics.\nTo maximize the return of upcoming cosmological surveys, we need an accurate\nway to model this complex relationship. Many techniques have been developed to\nmodel this connection, from Halo Occupation Distribution (HOD) to empirical and\nsemi-analytic models to hydrodynamic. Hydrodynamic simulations can incorporate\nmore detailed astrophysical processes but are computationally expensive; HODs,\non the other hand, are computationally cheap but have limited accuracy. In this\nwork, we present NeHOD, a generative framework based on variational diffusion\nmodel and Transformer, for painting galaxies/subhalos on top of DM with an\naccuracy of hydrodynamic simulations but at a computational cost similar to\nHOD. By modeling galaxies/subhalos as point clouds, instead of binning or\nvoxelization, we can resolve small spatial scales down to the resolution of the\nsimulations. For each halo, NeHOD predicts the positions, velocities, masses,\nand concentrations of its central and satellite galaxies. We train NeHOD on the\nTNG-Warm DM suite of the DREAMS project, which consists of 1024 high-resolution\nzoom-in hydrodynamic simulations of Milky Way-mass halos with varying warm DM\nmass and astrophysical parameters. We show that our model captures the complex\nrelationships between subhalo properties as a function of the simulation\nparameters, including the mass functions, stellar-halo mass relations,\nconcentration-mass relations, and spatial clustering. Our method can be used\nfor a large variety of downstream applications, from galaxy clustering to\nstrong lensing studies.","PeriodicalId":501207,"journal":{"name":"arXiv - PHYS - Cosmology and Nongalactic Astrophysics","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Cosmology and Nongalactic Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The connection between galaxies and their host dark matter (DM) halos is critical to our understanding of cosmology, galaxy formation, and DM physics. To maximize the return of upcoming cosmological surveys, we need an accurate way to model this complex relationship. Many techniques have been developed to model this connection, from Halo Occupation Distribution (HOD) to empirical and semi-analytic models to hydrodynamic. Hydrodynamic simulations can incorporate more detailed astrophysical processes but are computationally expensive; HODs, on the other hand, are computationally cheap but have limited accuracy. In this work, we present NeHOD, a generative framework based on variational diffusion model and Transformer, for painting galaxies/subhalos on top of DM with an accuracy of hydrodynamic simulations but at a computational cost similar to HOD. By modeling galaxies/subhalos as point clouds, instead of binning or voxelization, we can resolve small spatial scales down to the resolution of the simulations. For each halo, NeHOD predicts the positions, velocities, masses, and concentrations of its central and satellite galaxies. We train NeHOD on the TNG-Warm DM suite of the DREAMS project, which consists of 1024 high-resolution zoom-in hydrodynamic simulations of Milky Way-mass halos with varying warm DM mass and astrophysical parameters. We show that our model captures the complex relationships between subhalo properties as a function of the simulation parameters, including the mass functions, stellar-halo mass relations, concentration-mass relations, and spatial clustering. Our method can be used for a large variety of downstream applications, from galaxy clustering to strong lensing studies.
梦想是怎样炼成的?用扩散模型和点云模拟卫星星系和子星系种群
星系与其宿主暗物质(DM)光环之间的联系对于我们理解宇宙学、星系形成和暗物质物理学至关重要。为了最大限度地提高即将到来的宇宙学探测的回报,我们需要对这种复杂的关系进行精确的建模。已经开发了许多技术来模拟这种关系,从晕占位分布(HOD)到经验模型和半解析模型,再到流体力学模型。流体动力学模拟可以包含更详细的天体物理过程,但计算成本昂贵;另一方面,HOD 计算成本低廉,但精度有限。在这项工作中,我们提出了一个基于变异扩散模型和变换器的生成框架 NeHOD,用于在 DM 的基础上绘制星系/副星系,其精度与流体力学模拟相当,但计算成本与 HOD 相似。通过将星系/副光环建模为点云,而不是二进制或体素化,我们可以将小的空间尺度解析到模拟的分辨率。对于每个光环,NeHOD 都能预测其中心星系和卫星星系的位置、速度、质量和浓度。我们在DREAMS项目的TNG-暖DM套件上对NeHOD进行了训练,该套件由1024个高分辨率放大流体力学模拟组成,模拟了具有不同暖DM质量和天体物理参数的银河质量光环。我们的研究表明,我们的模型捕捉到了亚晕属性之间复杂的关系,这些关系是模拟参数的函数,包括质量函数、恒星-亚晕质量关系、浓度-质量关系和空间聚类。我们的方法可用于大量下游应用,从星系聚类到强透镜研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信