A Stochastic Approach to Reconstructing the Speed of Light in Cosmology

Cheng-Yu Zhang, Wei Hong, Yu-Chen Wang, Tong-Jie Zhang
{"title":"A Stochastic Approach to Reconstructing the Speed of Light in Cosmology","authors":"Cheng-Yu Zhang, Wei Hong, Yu-Chen Wang, Tong-Jie Zhang","doi":"arxiv-2409.03248","DOIUrl":null,"url":null,"abstract":"The Varying Speed of Light (VSL) model describes how the speed of light in a\nvacuum changes with cosmological redshift. Despite numerous models, there is\nlittle observational evidence for this variation. While the speed of light can\nbe accurately measured by physical means, cosmological methods are rarely used.\nPrevious studies quantified the speed of light at specific redshifts using\nGaussian processes and reconstructed the redshift-dependent function $c(z)$. It\nis crucial to quantify the speed of light across varying redshifts. We use the\nlatest data on angular diameter distances $D_A(z)$ and Hubble parameters $H(z)$\nfrom baryon acoustic oscillation (BAO) and cosmic chronometer measurements in\nthe redshift interval $z\\in[0.07,1.965]$. The speed of light $c(z)$ is\ndetermined using Gaussian and deep Gaussian processes to reconstruct $H(z)$,\n$D_A(z)$, and $D^{\\prime}_A(z)$. Furthermore, we conduct comparisons across\nthree distinct models, encompassing two renowned VSL models. We get the result\nof the parameters constraints in the models (1) for the ``$c$-c\" model,\n$c_0=29492.6 \\pm^{6.2}_{5.3} \\mathrm{~km} \\mathrm{~s}^{-1}$. (2) For the\n``$c$-cl\" model, $c_0=29665.5 \\pm^{11.2}_{11.4}\\mathrm{~km} \\mathrm{~s}^{-1}$\nand $n=0.05535 \\pm^{0.00008}_{0.00007}$. (3) For the ``$c$-CPL\" model,\n$c_0=29555.7 \\pm^{13.3}_{13.2} \\mathrm{~km} \\mathrm{~s}^{-1}$ and $n=-0.0607\n\\pm 0.0001$. Based on our findings, it may be inferred that Barrow's classical\nVSL model is not a suitable fit for our data. In contrast, the widely\nrecognized Chevallier-Polarski-Linder (CPL) VSL model, under some\ncircumstances, as well as the universal ``c is constant\" model, demonstrate a\nsatisfactory ability to account for our findings.","PeriodicalId":501207,"journal":{"name":"arXiv - PHYS - Cosmology and Nongalactic Astrophysics","volume":"396 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Cosmology and Nongalactic Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Varying Speed of Light (VSL) model describes how the speed of light in a vacuum changes with cosmological redshift. Despite numerous models, there is little observational evidence for this variation. While the speed of light can be accurately measured by physical means, cosmological methods are rarely used. Previous studies quantified the speed of light at specific redshifts using Gaussian processes and reconstructed the redshift-dependent function $c(z)$. It is crucial to quantify the speed of light across varying redshifts. We use the latest data on angular diameter distances $D_A(z)$ and Hubble parameters $H(z)$ from baryon acoustic oscillation (BAO) and cosmic chronometer measurements in the redshift interval $z\in[0.07,1.965]$. The speed of light $c(z)$ is determined using Gaussian and deep Gaussian processes to reconstruct $H(z)$, $D_A(z)$, and $D^{\prime}_A(z)$. Furthermore, we conduct comparisons across three distinct models, encompassing two renowned VSL models. We get the result of the parameters constraints in the models (1) for the ``$c$-c" model, $c_0=29492.6 \pm^{6.2}_{5.3} \mathrm{~km} \mathrm{~s}^{-1}$. (2) For the ``$c$-cl" model, $c_0=29665.5 \pm^{11.2}_{11.4}\mathrm{~km} \mathrm{~s}^{-1}$ and $n=0.05535 \pm^{0.00008}_{0.00007}$. (3) For the ``$c$-CPL" model, $c_0=29555.7 \pm^{13.3}_{13.2} \mathrm{~km} \mathrm{~s}^{-1}$ and $n=-0.0607 \pm 0.0001$. Based on our findings, it may be inferred that Barrow's classical VSL model is not a suitable fit for our data. In contrast, the widely recognized Chevallier-Polarski-Linder (CPL) VSL model, under some circumstances, as well as the universal ``c is constant" model, demonstrate a satisfactory ability to account for our findings.
宇宙学中重建光速的随机方法
光速可变(VSL)模型描述了真空中的光速如何随宇宙学红移而变化。尽管有许多模型,但这种变化几乎没有观测证据。以前的研究利用高斯过程量化了特定红移下的光速,并重建了依赖于红移的函数$c(z)$。量化不同红移下的光速至关重要。我们利用重子声波振荡(BAO)和宇宙天文台在红移区间$z/[0.07,1.965]$内测量到的角直径距离$D_A(z)$和哈勃参数$H(z)$的最新数据。光速$c(z)$是通过高斯和深高斯过程来确定的,从而重建了$H(z)$、$D_A(z)$和$D^{\prime}_A(z)$。此外,我们还比较了三个不同的模型,包括两个著名的 VSL 模型。我们得到了"$c$-c "模型参数约束的结果(1):$c_0=29492.6 (pm^{6.2}_{5.3})。\mathrm{~km}\mathrm{~s}^{-1}$.(2) 对于"`$c$-cl "模型,$c_0=29665.5 \pm^{11.2}_{11.4}\mathrm{~km}.\和 $n=0.05535 \pm^{0.00008}_{0.00007}$。(3) 对于"$c$-CPL "模型,$c_0=29555.7 (pm^{13.3}_{13.2})。\mathrm{~km}\mathrm{~s}^{-1}$ 和 $n=-0.0607\pm 0.0001$。根据我们的研究结果,可以推断巴罗的经典 VSL 模型并不适合我们的数据。与此相反,在某些情况下,被广泛认可的Chevallier-Polarski-Linder(CPL)VSL模型以及通用的 "c为常数 "模型在解释我们的发现方面表现出令人满意的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信