The cosmological analysis of X-ray cluster surveys: VI. Inference based on analytically simulated observable diagrams

M. Kosiba, N. Cerardi, M. Pierre, F. Lanusse, C. Garrel, N. Werner, M. Shalak
{"title":"The cosmological analysis of X-ray cluster surveys: VI. Inference based on analytically simulated observable diagrams","authors":"M. Kosiba, N. Cerardi, M. Pierre, F. Lanusse, C. Garrel, N. Werner, M. Shalak","doi":"arxiv-2409.06001","DOIUrl":null,"url":null,"abstract":"The number density of galaxy clusters across mass and redshift has been\nestablished as a powerful cosmological probe. Cosmological analyses with galaxy\nclusters traditionally employ scaling relations. However, many challenges arise\nfrom this approach as the scaling relations are highly scattered, may be\nill-calibrated, depend on the cosmology, and contain many nuisance parameters\nwith low physical significance. In this paper, we use a simulation-based\ninference method utilizing artificial neural networks to optimally extract\ncosmological information from a shallow X-ray survey of galaxy clusters, solely\nusing count rates (CR), hardness ratios (HR), and redshifts. This procedure\nenables us to conduct likelihood-free inference of cosmological parameters\n$\\Omega_{\\mathrm{m}}$ and $\\sigma_8$. We analytically generate simulations of\ngalaxy cluster distribution in a CR, HR space in multiple redshift bins based\non totally random combinations of cosmological and scaling relation parameters.\nWe train Convolutional Neural Networks (CNNs) to retrieve the cosmological\nparameters from these simulations. We then use neural density estimation (NDE)\nneural networks to predict the posterior probability distribution of\n$\\Omega_{\\mathrm{m}}$ and $\\sigma_8$ given an input galaxy cluster sample. The\n1 $\\sigma$ errors of our density estimator on one of the target testing\nsimulations are 1000 deg$^2$: 15.2% for $\\Omega_{\\mathrm{m}}$ and 10.0% for\n$\\sigma_8$; 10000 deg$^2$: 9.6% for $\\Omega_{\\mathrm{m}}$ and 5.6% for\n$\\sigma_8$. We also compare our results with Fisher analysis. We demonstrate,\nas a proof of concept, that it is possible to calculate cosmological\npredictions of $\\Omega_{\\mathrm{m}}$ and $\\sigma_8$ from a galaxy cluster\npopulation without explicitly computing cluster masses and even, the scaling\nrelation coefficients, thus avoiding potential biases resulting from such a\nprocedure. [abridged]","PeriodicalId":501207,"journal":{"name":"arXiv - PHYS - Cosmology and Nongalactic Astrophysics","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Cosmology and Nongalactic Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The number density of galaxy clusters across mass and redshift has been established as a powerful cosmological probe. Cosmological analyses with galaxy clusters traditionally employ scaling relations. However, many challenges arise from this approach as the scaling relations are highly scattered, may be ill-calibrated, depend on the cosmology, and contain many nuisance parameters with low physical significance. In this paper, we use a simulation-based inference method utilizing artificial neural networks to optimally extract cosmological information from a shallow X-ray survey of galaxy clusters, solely using count rates (CR), hardness ratios (HR), and redshifts. This procedure enables us to conduct likelihood-free inference of cosmological parameters $\Omega_{\mathrm{m}}$ and $\sigma_8$. We analytically generate simulations of galaxy cluster distribution in a CR, HR space in multiple redshift bins based on totally random combinations of cosmological and scaling relation parameters. We train Convolutional Neural Networks (CNNs) to retrieve the cosmological parameters from these simulations. We then use neural density estimation (NDE) neural networks to predict the posterior probability distribution of $\Omega_{\mathrm{m}}$ and $\sigma_8$ given an input galaxy cluster sample. The 1 $\sigma$ errors of our density estimator on one of the target testing simulations are 1000 deg$^2$: 15.2% for $\Omega_{\mathrm{m}}$ and 10.0% for $\sigma_8$; 10000 deg$^2$: 9.6% for $\Omega_{\mathrm{m}}$ and 5.6% for $\sigma_8$. We also compare our results with Fisher analysis. We demonstrate, as a proof of concept, that it is possible to calculate cosmological predictions of $\Omega_{\mathrm{m}}$ and $\sigma_8$ from a galaxy cluster population without explicitly computing cluster masses and even, the scaling relation coefficients, thus avoiding potential biases resulting from such a procedure. [abridged]
X 射线星团测量的宇宙学分析:VI.基于分析模拟观测图的推论
星系团在不同质量和红移下的数量密度已被确定为一个强大的宇宙学探测器。利用星系团进行宇宙学分析,传统上采用比例关系。然而,这种方法面临许多挑战,因为缩放关系高度分散,可能未经校准,依赖于宇宙学,而且包含许多物理意义不大的干扰参数。在本文中,我们利用人工神经网络,使用一种基于模拟的推理方法,从星系团的浅层 X 射线调查中,仅利用计数率(CR)、硬度比(HR)和红移,优化提取宇宙学信息。这一过程使我们能够对宇宙学参数$\Omega_{mathrm{m}}$和$\sigma_8$进行无似然推理。我们根据宇宙学参数和比例关系参数的完全随机组合,分析生成多个红移箱内CR、HR空间中星系团分布的模拟结果。然后,我们使用神经密度估计(NDE)神经网络来预测输入星系团样本的$\Omega_{mathrm{m}}$和$\sigma_8$的后验概率分布。我们的密度估算器在一个目标测试模拟中的1 $/sigma$误差是1000 deg$^2$:$\Omega_{mathrm{m}}$为15.2%,$\sigma_8$为10.0%;10000 deg$^2$:$\Omega_{mathrm{m}}$为9.6%,$\sigma_8$为5.6%。我们还将结果与费雪分析进行了比较。作为概念证明,我们证明了可以通过星系团来计算$\Omega_{mathrm{m}}$和$\sigma_8$的宇宙学预测值,而不需要明确计算星系团质量,甚至不需要计算缩放相关系数,从而避免了这种方法可能产生的偏差。[节略]
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信