Logic interpretations of ANN partition cells

Ingo Schmitt
{"title":"Logic interpretations of ANN partition cells","authors":"Ingo Schmitt","doi":"arxiv-2408.14314","DOIUrl":null,"url":null,"abstract":"Consider a binary classification problem solved using a feed-forward\nartificial neural network (ANN). Let the ANN be composed of a ReLU layer and\nseveral linear layers (convolution, sum-pooling, or fully connected). We assume\nthe network was trained with high accuracy. Despite numerous suggested\napproaches, interpreting an artificial neural network remains challenging for\nhumans. For a new method of interpretation, we construct a bridge between a\nsimple ANN and logic. As a result, we can analyze and manipulate the semantics\nof an ANN using the powerful tool set of logic. To achieve this, we decompose\nthe input space of the ANN into several network partition cells. Each network\npartition cell represents a linear combination that maps input values to a\nclassifying output value. For interpreting the linear map of a partition cell\nusing logic expressions, we suggest minterm values as the input of a simple\nANN. We derive logic expressions representing interaction patterns for\nseparating objects classified as 1 from those classified as 0. To facilitate an\ninterpretation of logic expressions, we present them as binary logic trees.","PeriodicalId":501208,"journal":{"name":"arXiv - CS - Logic in Computer Science","volume":"395 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.14314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Consider a binary classification problem solved using a feed-forward artificial neural network (ANN). Let the ANN be composed of a ReLU layer and several linear layers (convolution, sum-pooling, or fully connected). We assume the network was trained with high accuracy. Despite numerous suggested approaches, interpreting an artificial neural network remains challenging for humans. For a new method of interpretation, we construct a bridge between a simple ANN and logic. As a result, we can analyze and manipulate the semantics of an ANN using the powerful tool set of logic. To achieve this, we decompose the input space of the ANN into several network partition cells. Each network partition cell represents a linear combination that maps input values to a classifying output value. For interpreting the linear map of a partition cell using logic expressions, we suggest minterm values as the input of a simple ANN. We derive logic expressions representing interaction patterns for separating objects classified as 1 from those classified as 0. To facilitate an interpretation of logic expressions, we present them as binary logic trees.
ANN 分区单元的逻辑解释
考虑使用前馈人工神经网络(ANN)解决二元分类问题。让人工神经网络由一个 ReLU 层和多个线性层(卷积层、求和池层或全连接层)组成。我们假设该网络经过高精度训练。尽管提出了许多方法,但对于人类来说,解读人工神经网络仍然是一项挑战。作为一种新的解释方法,我们在简单的人工神经网络和逻辑之间架起了一座桥梁。因此,我们可以使用强大的逻辑工具集来分析和操纵人工神经网络的语义。为此,我们将 ANN 的输入空间分解为多个网络分区单元。每个网络分区单元代表一个将输入值映射到分类输出值的线性组合。为了用逻辑表达式解释分区单元的线性映射,我们建议将 minterm 值作为简单 ANN 的输入。为了便于解释逻辑表达式,我们将其表述为二进制逻辑树。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信