Temporal Ensemble Logic

Guo-Qiang Zhang
{"title":"Temporal Ensemble Logic","authors":"Guo-Qiang Zhang","doi":"arxiv-2408.14443","DOIUrl":null,"url":null,"abstract":"We introduce Temporal Ensemble Logic (TEL), a monadic, first-order modal\nlogic for linear-time temporal reasoning. TEL includes primitive temporal\nconstructs such as ``always up to $t$ time later'' ($\\Box_t$), ``sometimes\nbefore $t$ time in the future'' ($\\Diamond_t$), and ``$t$-time later''\n$\\varphi_t$. TEL has been motivated from the requirement for rigor and\nreproducibility for cohort specification and discovery in clinical and\npopulation health research, to fill a gap in formalizing temporal reasoning in\nbiomedicine. In this paper, we first introduce TEL in a general set up, with\ndiscrete and dense time as special cases. We then focus on the theoretical\ndevelopment of discrete TEL on the temporal domain of positive integers\n$\\mathbb{N}^+$, denoted as ${\\rm TEL}_{\\mathbb{N}^+}$. ${\\rm\nTEL}_{\\mathbb{N}^+}$ is strictly more expressive than the standard monadic\nsecond order logic, characterized by B\\\"{u}chi automata. We present its formal\nsemantics, a proof system, and provide a proof for the undecidability of the\nsatisfiability of ${\\rm TEL}_{\\mathbb{N}^+}$. We also discuss expressiveness\nand decidability fragments for ${\\rm TEL}_{\\mathbb{N}^+}$, followed by\nillustrative applications.","PeriodicalId":501208,"journal":{"name":"arXiv - CS - Logic in Computer Science","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.14443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce Temporal Ensemble Logic (TEL), a monadic, first-order modal logic for linear-time temporal reasoning. TEL includes primitive temporal constructs such as ``always up to $t$ time later'' ($\Box_t$), ``sometimes before $t$ time in the future'' ($\Diamond_t$), and ``$t$-time later'' $\varphi_t$. TEL has been motivated from the requirement for rigor and reproducibility for cohort specification and discovery in clinical and population health research, to fill a gap in formalizing temporal reasoning in biomedicine. In this paper, we first introduce TEL in a general set up, with discrete and dense time as special cases. We then focus on the theoretical development of discrete TEL on the temporal domain of positive integers $\mathbb{N}^+$, denoted as ${\rm TEL}_{\mathbb{N}^+}$. ${\rm TEL}_{\mathbb{N}^+}$ is strictly more expressive than the standard monadic second order logic, characterized by B\"{u}chi automata. We present its formal semantics, a proof system, and provide a proof for the undecidability of the satisfiability of ${\rm TEL}_{\mathbb{N}^+}$. We also discuss expressiveness and decidability fragments for ${\rm TEL}_{\mathbb{N}^+}$, followed by illustrative applications.
时态组合逻辑
我们介绍了时态集合逻辑(Temporal Ensemble Logic,TEL),这是一种用于线性时态推理的一元一阶模态逻辑。时态组合逻辑包括原始时态结构,如 "总是到 $t$ 时间之后"($\Box_t$)、"有时在未来 $t$ 时间之前"($\Diamond_t$)和"$t$ 时间之后"($\varphi_t$)。在临床和人群健康研究中,对队列规范和发现的严谨性和可重复性提出了要求,而 TEL 正是为了填补生物医学中时间推理形式化方面的空白而诞生的。本文首先介绍了一般情况下的时间推理,并将离散时间和稠密时间作为特例。然后,我们重点讨论了正整数时域上离散 TEL 的理论发展,表示为 ${\rmTEL}_{\mathbb{N}^+}$。${{rmTEL}_{\mathbb{N}^+}$ 严格来说比标准的一元二阶逻辑更具表现力,它以 B\"{u}chi 自动机为特征。我们介绍了它的形式语义、证明系统,并提供了${{rm TEL}_{\mathbb{N}^+}$可满足性的不可判定性证明。我们还讨论了 ${\rm TEL}_{\mathbb{N}^+}$ 的可表达性和可判定性片段,并随后给出了说明性应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信