Enhancing Analogical Reasoning in the Abstraction and Reasoning Corpus via Model-Based RL

Jihwan Lee, Woochang Sim, Sejin Kim, Sundong Kim
{"title":"Enhancing Analogical Reasoning in the Abstraction and Reasoning Corpus via Model-Based RL","authors":"Jihwan Lee, Woochang Sim, Sejin Kim, Sundong Kim","doi":"arxiv-2408.14855","DOIUrl":null,"url":null,"abstract":"This paper demonstrates that model-based reinforcement learning (model-based\nRL) is a suitable approach for the task of analogical reasoning. We hypothesize\nthat model-based RL can solve analogical reasoning tasks more efficiently\nthrough the creation of internal models. To test this, we compared DreamerV3, a\nmodel-based RL method, with Proximal Policy Optimization, a model-free RL\nmethod, on the Abstraction and Reasoning Corpus (ARC) tasks. Our results\nindicate that model-based RL not only outperforms model-free RL in learning and\ngeneralizing from single tasks but also shows significant advantages in\nreasoning across similar tasks.","PeriodicalId":501208,"journal":{"name":"arXiv - CS - Logic in Computer Science","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.14855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper demonstrates that model-based reinforcement learning (model-based RL) is a suitable approach for the task of analogical reasoning. We hypothesize that model-based RL can solve analogical reasoning tasks more efficiently through the creation of internal models. To test this, we compared DreamerV3, a model-based RL method, with Proximal Policy Optimization, a model-free RL method, on the Abstraction and Reasoning Corpus (ARC) tasks. Our results indicate that model-based RL not only outperforms model-free RL in learning and generalizing from single tasks but also shows significant advantages in reasoning across similar tasks.
通过基于模型的 RL 增强抽象与推理语料库中的类比推理能力
本文证明了基于模型的强化学习(model-basedRL)是一种适用于类比推理任务的方法。我们假设,通过创建内部模型,基于模型的 RL 可以更高效地解决类比推理任务。为了验证这一点,我们在抽象与推理语料库(ARC)任务中比较了基于模型的 RL 方法 DreamerV3 和无模型 RL 方法 Proximal Policy Optimization。我们的结果表明,基于模型的 RL 不仅在从单一任务中学习和概括方面优于无模型 RL,而且在类似任务的推理方面也表现出显著优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信