{"title":"Multi-method characterization of sandstone pore size distribution heterogeneity and its influence on porosity and permeability variation","authors":"Junjian Zhang, Fangkai Quan, Hui Zhang, Yinchuan Shao, Yanning Han, Yuqiang Yang, Xiangchun Chang, Xiaoyang Zhang","doi":"10.1007/s11707-022-1044-8","DOIUrl":null,"url":null,"abstract":"<p>Pore volume/surface area and size distribution heterogeneity are two important parameters of pore structures, which restrict the gas-water-oil migration process in sandstone reservoirs. The fractal theory has been proved to be one of the most effective methods to quantify pore distribution heterogeneity. However, the dynamic variation of porosity and permeability due to fractal characteristics has been rarely studied. In this paper, physical properties, mineral composition, and pore distribution of 18 groups of sandstone samples were analyzed using scanning electron microscope (SEM) and high-pressure mercury injection tests. Then, Sierpinski model, Menger model, thermodynamic model, and multi-fractal model were used to calculate the fractal dimension of the pore volume. Thus, the relationship between fractal dimension and porosity/permeability variation rate, and pore compressibility were studied. The results are as follows. 1) All samples can be divided into three types based on pore volume (0.9 cm<sup>3</sup>·g<sup>−1</sup>) and mercury removal efficiency (35%), i.e., Type A (< 0.9 cm<sup>3</sup>·g<sup>−1</sup>and < 35%); Type B (> 0.9 cm<sup>3</sup>·g<sup>−1</sup> and <35%); Type C (> 0.9 cm<sup>3</sup>·g<sup>−1</sup> and > 35%). 2) Four fractal models had poor applicability in characterizing fractal characteristics of different sample types. The fractal dimension by the Sierpinski model had a good linear correlation with that of other models. Pores with smaller volumes dominated the overall pore distribution heterogeneity by multi-fractal dimension. The pore diameter between 200–1000 nm and larger than 1000 nm was the key pore size interval that determined the fractal characteristics. 3) With the increase of confining pressures, porosity and permeability decreased in the form of a power function. The compressibility coefficient of typical samples was 0.002–0.2 MPa<sup>−1</sup>. The compressibility of Types A and B was significantly higher than that of Type C, indicating that the total pore volume was not the key factor affecting the pore compressibility. The correlation of compressibility coefficient/porosity variation rate with pore volume (total and different size pore volume), fractal value and mineral component were not significant. This indicates that these three factors comprehensively restricted pore compression.</p>","PeriodicalId":48927,"journal":{"name":"Frontiers of Earth Science","volume":"8 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Earth Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11707-022-1044-8","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Pore volume/surface area and size distribution heterogeneity are two important parameters of pore structures, which restrict the gas-water-oil migration process in sandstone reservoirs. The fractal theory has been proved to be one of the most effective methods to quantify pore distribution heterogeneity. However, the dynamic variation of porosity and permeability due to fractal characteristics has been rarely studied. In this paper, physical properties, mineral composition, and pore distribution of 18 groups of sandstone samples were analyzed using scanning electron microscope (SEM) and high-pressure mercury injection tests. Then, Sierpinski model, Menger model, thermodynamic model, and multi-fractal model were used to calculate the fractal dimension of the pore volume. Thus, the relationship between fractal dimension and porosity/permeability variation rate, and pore compressibility were studied. The results are as follows. 1) All samples can be divided into three types based on pore volume (0.9 cm3·g−1) and mercury removal efficiency (35%), i.e., Type A (< 0.9 cm3·g−1and < 35%); Type B (> 0.9 cm3·g−1 and <35%); Type C (> 0.9 cm3·g−1 and > 35%). 2) Four fractal models had poor applicability in characterizing fractal characteristics of different sample types. The fractal dimension by the Sierpinski model had a good linear correlation with that of other models. Pores with smaller volumes dominated the overall pore distribution heterogeneity by multi-fractal dimension. The pore diameter between 200–1000 nm and larger than 1000 nm was the key pore size interval that determined the fractal characteristics. 3) With the increase of confining pressures, porosity and permeability decreased in the form of a power function. The compressibility coefficient of typical samples was 0.002–0.2 MPa−1. The compressibility of Types A and B was significantly higher than that of Type C, indicating that the total pore volume was not the key factor affecting the pore compressibility. The correlation of compressibility coefficient/porosity variation rate with pore volume (total and different size pore volume), fractal value and mineral component were not significant. This indicates that these three factors comprehensively restricted pore compression.
期刊介绍:
Frontiers of Earth Science publishes original, peer-reviewed, theoretical and experimental frontier research papers as well as significant review articles of more general interest to earth scientists. The journal features articles dealing with observations, patterns, processes, and modeling of both innerspheres (including deep crust, mantle, and core) and outerspheres (including atmosphere, hydrosphere, and biosphere) of the earth. Its aim is to promote communication and share knowledge among the international earth science communities