Guang-qi Chen, Yan-qiang Wu, Ming-yao Xia, Zhi-yuan Li
{"title":"Focal mechanics and disaster characteristics of the 2024 M 7.6 Noto Peninsula Earthquake, Japan","authors":"Guang-qi Chen, Yan-qiang Wu, Ming-yao Xia, Zhi-yuan Li","doi":"10.1007/s11709-024-1111-1","DOIUrl":null,"url":null,"abstract":"<p>On January 1, 2024, a devastating <i>M</i> 7.6 earthquake struck the Noto Peninsula, Ishikawa Prefecture, Japan, resulting in significant casualties and property damage. Utilizing information from the first six days after the earthquake, this article analyzes the seismic source characteristics, disaster situation, and emergency response of this earthquake. The results show: 1) The earthquake rupture was of the thrust type, with aftershock distribution showing a north-east-oriented belt-like feature of 150 km. 2) Global Navigation Satellite System (GNSS) and Interferometric synthetic aperture radar (InSAR), observations detected significant westward to north-westward co-seismic displacement near the epicenter, with the maximum horizontal displacement reaching 1.2 m and the vertical uplift displacement reaching 4 m. A two-segment fault inversion model fits the observational data well. 3) Near the epicenter, large Peak Ground Velocity (PGV) and Peak Ground Acceleration (PGA) were observed, with the maxima reaching 145 cm/s and 2681 gal, respectively, and the intensity reached the highest level 7 on the Japanese (Japan Meteorological Agency, JMA) intensity standard, which is higher than level 10 of the United States Geological Survey (USGS) Modified Mercalli Intensity (MMI) standard. 4) The observation of the very rare multiple strong pulse-like ground motion (PLGM) waveform poses a topic worthy of research in the field of earthquake engineering. 5) As of January 7, the earthquake had left 128 deaths and 560 injuries in Ishikawa Prefecture, with 1305 buildings completely or partially destroyed, and had triggered a chain of disasters including tsunamis, fires, slope failures, and road damage. Finally, this paper summarizes the emergency rescue, information dissemination, and other disaster response and management measures taken in response to this earthquake. This work provides a reference case for carrying out effective responses, and offers lessons for handling similar events in the future.</p>","PeriodicalId":12476,"journal":{"name":"Frontiers of Structural and Civil Engineering","volume":"6 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Structural and Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11709-024-1111-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
On January 1, 2024, a devastating M 7.6 earthquake struck the Noto Peninsula, Ishikawa Prefecture, Japan, resulting in significant casualties and property damage. Utilizing information from the first six days after the earthquake, this article analyzes the seismic source characteristics, disaster situation, and emergency response of this earthquake. The results show: 1) The earthquake rupture was of the thrust type, with aftershock distribution showing a north-east-oriented belt-like feature of 150 km. 2) Global Navigation Satellite System (GNSS) and Interferometric synthetic aperture radar (InSAR), observations detected significant westward to north-westward co-seismic displacement near the epicenter, with the maximum horizontal displacement reaching 1.2 m and the vertical uplift displacement reaching 4 m. A two-segment fault inversion model fits the observational data well. 3) Near the epicenter, large Peak Ground Velocity (PGV) and Peak Ground Acceleration (PGA) were observed, with the maxima reaching 145 cm/s and 2681 gal, respectively, and the intensity reached the highest level 7 on the Japanese (Japan Meteorological Agency, JMA) intensity standard, which is higher than level 10 of the United States Geological Survey (USGS) Modified Mercalli Intensity (MMI) standard. 4) The observation of the very rare multiple strong pulse-like ground motion (PLGM) waveform poses a topic worthy of research in the field of earthquake engineering. 5) As of January 7, the earthquake had left 128 deaths and 560 injuries in Ishikawa Prefecture, with 1305 buildings completely or partially destroyed, and had triggered a chain of disasters including tsunamis, fires, slope failures, and road damage. Finally, this paper summarizes the emergency rescue, information dissemination, and other disaster response and management measures taken in response to this earthquake. This work provides a reference case for carrying out effective responses, and offers lessons for handling similar events in the future.
期刊介绍:
Frontiers of Structural and Civil Engineering is an international journal that publishes original research papers, review articles and case studies related to civil and structural engineering. Topics include but are not limited to the latest developments in building and bridge structures, geotechnical engineering, hydraulic engineering, coastal engineering, and transport engineering. Case studies that demonstrate the successful applications of cutting-edge research technologies are welcome. The journal also promotes and publishes interdisciplinary research and applications connecting civil engineering and other disciplines, such as bio-, info-, nano- and social sciences and technology. Manuscripts submitted for publication will be subject to a stringent peer review.