Focal mechanics and disaster characteristics of the 2024 M 7.6 Noto Peninsula Earthquake, Japan

IF 2.9 3区 工程技术 Q2 ENGINEERING, CIVIL
Guang-qi Chen, Yan-qiang Wu, Ming-yao Xia, Zhi-yuan Li
{"title":"Focal mechanics and disaster characteristics of the 2024 M 7.6 Noto Peninsula Earthquake, Japan","authors":"Guang-qi Chen, Yan-qiang Wu, Ming-yao Xia, Zhi-yuan Li","doi":"10.1007/s11709-024-1111-1","DOIUrl":null,"url":null,"abstract":"<p>On January 1, 2024, a devastating <i>M</i> 7.6 earthquake struck the Noto Peninsula, Ishikawa Prefecture, Japan, resulting in significant casualties and property damage. Utilizing information from the first six days after the earthquake, this article analyzes the seismic source characteristics, disaster situation, and emergency response of this earthquake. The results show: 1) The earthquake rupture was of the thrust type, with aftershock distribution showing a north-east-oriented belt-like feature of 150 km. 2) Global Navigation Satellite System (GNSS) and Interferometric synthetic aperture radar (InSAR), observations detected significant westward to north-westward co-seismic displacement near the epicenter, with the maximum horizontal displacement reaching 1.2 m and the vertical uplift displacement reaching 4 m. A two-segment fault inversion model fits the observational data well. 3) Near the epicenter, large Peak Ground Velocity (PGV) and Peak Ground Acceleration (PGA) were observed, with the maxima reaching 145 cm/s and 2681 gal, respectively, and the intensity reached the highest level 7 on the Japanese (Japan Meteorological Agency, JMA) intensity standard, which is higher than level 10 of the United States Geological Survey (USGS) Modified Mercalli Intensity (MMI) standard. 4) The observation of the very rare multiple strong pulse-like ground motion (PLGM) waveform poses a topic worthy of research in the field of earthquake engineering. 5) As of January 7, the earthquake had left 128 deaths and 560 injuries in Ishikawa Prefecture, with 1305 buildings completely or partially destroyed, and had triggered a chain of disasters including tsunamis, fires, slope failures, and road damage. Finally, this paper summarizes the emergency rescue, information dissemination, and other disaster response and management measures taken in response to this earthquake. This work provides a reference case for carrying out effective responses, and offers lessons for handling similar events in the future.</p>","PeriodicalId":12476,"journal":{"name":"Frontiers of Structural and Civil Engineering","volume":"6 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Structural and Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11709-024-1111-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

On January 1, 2024, a devastating M 7.6 earthquake struck the Noto Peninsula, Ishikawa Prefecture, Japan, resulting in significant casualties and property damage. Utilizing information from the first six days after the earthquake, this article analyzes the seismic source characteristics, disaster situation, and emergency response of this earthquake. The results show: 1) The earthquake rupture was of the thrust type, with aftershock distribution showing a north-east-oriented belt-like feature of 150 km. 2) Global Navigation Satellite System (GNSS) and Interferometric synthetic aperture radar (InSAR), observations detected significant westward to north-westward co-seismic displacement near the epicenter, with the maximum horizontal displacement reaching 1.2 m and the vertical uplift displacement reaching 4 m. A two-segment fault inversion model fits the observational data well. 3) Near the epicenter, large Peak Ground Velocity (PGV) and Peak Ground Acceleration (PGA) were observed, with the maxima reaching 145 cm/s and 2681 gal, respectively, and the intensity reached the highest level 7 on the Japanese (Japan Meteorological Agency, JMA) intensity standard, which is higher than level 10 of the United States Geological Survey (USGS) Modified Mercalli Intensity (MMI) standard. 4) The observation of the very rare multiple strong pulse-like ground motion (PLGM) waveform poses a topic worthy of research in the field of earthquake engineering. 5) As of January 7, the earthquake had left 128 deaths and 560 injuries in Ishikawa Prefecture, with 1305 buildings completely or partially destroyed, and had triggered a chain of disasters including tsunamis, fires, slope failures, and road damage. Finally, this paper summarizes the emergency rescue, information dissemination, and other disaster response and management measures taken in response to this earthquake. This work provides a reference case for carrying out effective responses, and offers lessons for handling similar events in the future.

2024 年日本能登半岛 7.6 级地震的焦点力学和灾害特征
2024 年 1 月 1 日,日本石川县能登半岛发生 M7.6 级破坏性地震,造成重大人员伤亡和财产损失。本文利用震后前六天的信息,分析了此次地震的震源特征、灾情和应急响应。结果表明1)地震断裂为推力型,余震分布呈北东向150千米带状特征。2)通过全球导航卫星系统(GNSS)和干涉合成孔径雷达(InSAR)观测,发现震中附近有明显的西向至北西向同震位移,最大水平位移达 1.2 米,垂直隆起位移达 4 米。3)震中附近观测到较大的峰值地表速度(PGV)和峰值地表加速度(PGA),最大值分别达到 145 cm/s 和 2681 gal,烈度达到日本气象厅(JMA)烈度标准的最高 7 级,高于美国地质调查局(USGS)修正麦卡利烈度(MMI)标准的 10 级。4)观测到非常罕见的多强脉冲样地动(PLGM)波形是地震工程领域值得研究的课题。5) 截至 1 月 7 日,地震已造成石川县 128 人死亡,560 人受伤,1305 栋建筑物完全或部分损毁,并引发了海啸、火灾、斜坡坍塌、道路损毁等一系列灾害。最后,本文总结了针对此次地震所采取的紧急救援、信息发布及其他灾害应对和管理措施。这项工作为实施有效的应对措施提供了一个参考案例,并为今后处理类似事件提供了借鉴。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.20
自引率
3.30%
发文量
734
期刊介绍: Frontiers of Structural and Civil Engineering is an international journal that publishes original research papers, review articles and case studies related to civil and structural engineering. Topics include but are not limited to the latest developments in building and bridge structures, geotechnical engineering, hydraulic engineering, coastal engineering, and transport engineering. Case studies that demonstrate the successful applications of cutting-edge research technologies are welcome. The journal also promotes and publishes interdisciplinary research and applications connecting civil engineering and other disciplines, such as bio-, info-, nano- and social sciences and technology. Manuscripts submitted for publication will be subject to a stringent peer review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信