Fitting spatial stochastic frontier models in Stata

Kerui Du, Luis Orea, Inmaculada C. Álvarez
{"title":"Fitting spatial stochastic frontier models in Stata","authors":"Kerui Du, Luis Orea, Inmaculada C. Álvarez","doi":"10.1177/1536867x241276109","DOIUrl":null,"url":null,"abstract":"In this article, we introduce a new command, xtsfsp, for fitting spatial stochastic frontier models in Stata. Over the last decades, stochastic frontier models have seen important theoretical progress via the incorporation of various types of spatial components. Models that can account for spatial dependence and spillovers have been developed for efficiency and productivity analysis, drawing extensive attention from industry and academia. Because of the unavailability of the statistical packages, the empirical applications of the new stochastic frontier models appear to be lagging. The xtsfsp command provides a procedure for fitting spatial stochastic frontier models in the style of Orea and Álvarez (2019, Journal of Econometrics 213: 556-577) and Galli (2023, Spatial Economic Analysis 18: 239-258), enabling users to handle different sources of spatial dependence. In this article, we introduce spatial stochastic frontier models, describing the syntax and options of the new command and providing several examples to illustrate its usage.","PeriodicalId":501101,"journal":{"name":"The Stata Journal: Promoting communications on statistics and Stata","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Stata Journal: Promoting communications on statistics and Stata","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/1536867x241276109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we introduce a new command, xtsfsp, for fitting spatial stochastic frontier models in Stata. Over the last decades, stochastic frontier models have seen important theoretical progress via the incorporation of various types of spatial components. Models that can account for spatial dependence and spillovers have been developed for efficiency and productivity analysis, drawing extensive attention from industry and academia. Because of the unavailability of the statistical packages, the empirical applications of the new stochastic frontier models appear to be lagging. The xtsfsp command provides a procedure for fitting spatial stochastic frontier models in the style of Orea and Álvarez (2019, Journal of Econometrics 213: 556-577) and Galli (2023, Spatial Economic Analysis 18: 239-258), enabling users to handle different sources of spatial dependence. In this article, we introduce spatial stochastic frontier models, describing the syntax and options of the new command and providing several examples to illustrate its usage.
在 Stata 中拟合空间随机前沿模型
在本文中,我们将介绍一个新命令--xtsfsp,用于在 Stata 中拟合空间随机前沿模型。在过去几十年里,随机前沿模型通过纳入各种类型的空间成分取得了重要的理论进展。在效率和生产率分析中,已经开发出了能够考虑空间依赖性和溢出效应的模型,引起了工业界和学术界的广泛关注。由于缺乏统计软件包,新的随机前沿模型的经验应用显得滞后。xtsfsp命令提供了一个拟合空间随机前沿模型的程序,与Orea和Álvarez(2019,《计量经济学杂志》213:556-577)和Galli(2023,《空间经济分析》18:239-258)的风格一致,使用户能够处理不同的空间依赖性来源。在本文中,我们将介绍空间随机前沿模型,描述新命令的语法和选项,并举例说明其用法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信