Getting away from the cutoff in regression discontinuity designs

Filippo Palomba
{"title":"Getting away from the cutoff in regression discontinuity designs","authors":"Filippo Palomba","doi":"10.1177/1536867x241276108","DOIUrl":null,"url":null,"abstract":"Regression discontinuity (RD) designs are highly popular in economic research because of their strong internal validity and straightforward intuition. While RD estimates are local in nature, several recent articles propose methods that generalize RD estimates to units outside a small neighborhood of the cutoff. In this article, I introduce the getaway package, which implements the method proposed by Angrist and Rokkanen (2015, Journal of the American Statistical Association 110: 1331-1344) to extrapolate treatment-effect estimates “away from the cutoff”, relying on a classical unconfoundedness condition. Additionally, the package features a data-driven algorithm designed to identify a set of covariates that fulfills the unconfoundedness assumption. It also incorporates a toolkit intended for testing and visualization purposes.","PeriodicalId":501101,"journal":{"name":"The Stata Journal: Promoting communications on statistics and Stata","volume":"80 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Stata Journal: Promoting communications on statistics and Stata","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/1536867x241276108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Regression discontinuity (RD) designs are highly popular in economic research because of their strong internal validity and straightforward intuition. While RD estimates are local in nature, several recent articles propose methods that generalize RD estimates to units outside a small neighborhood of the cutoff. In this article, I introduce the getaway package, which implements the method proposed by Angrist and Rokkanen (2015, Journal of the American Statistical Association 110: 1331-1344) to extrapolate treatment-effect estimates “away from the cutoff”, relying on a classical unconfoundedness condition. Additionally, the package features a data-driven algorithm designed to identify a set of covariates that fulfills the unconfoundedness assumption. It also incorporates a toolkit intended for testing and visualization purposes.
在回归不连续设计中摆脱截止点的影响
回归不连续(RD)设计因其强大的内部有效性和直观性而在经济研究中大受欢迎。虽然 RD 估计是局部性的,但最近有几篇文章提出了将 RD 估计推广到临界点小邻域以外单位的方法。在本文中,我将介绍 getaway 软件包,它实现了 Angrist 和 Rokkanen(2015 年,《美国统计协会杂志》110: 1331-1344)提出的方法,依靠经典的无边界条件,"远离临界点 "外推治疗效果估计值。此外,该软件包还采用了一种数据驱动算法,旨在确定一组符合无边界假设的协变量。它还包含一个用于测试和可视化的工具包。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信