An artificial neural network based deep collocation method for the solution of transient linear and nonlinear partial differential equations

IF 2.9 3区 工程技术 Q2 ENGINEERING, CIVIL
Abhishek Mishra, Cosmin Anitescu, Pattabhi Ramaiah Budarapu, Sundararajan Natarajan, Pandu Ranga Vundavilli, Timon Rabczuk
{"title":"An artificial neural network based deep collocation method for the solution of transient linear and nonlinear partial differential equations","authors":"Abhishek Mishra, Cosmin Anitescu, Pattabhi Ramaiah Budarapu, Sundararajan Natarajan, Pandu Ranga Vundavilli, Timon Rabczuk","doi":"10.1007/s11709-024-1011-4","DOIUrl":null,"url":null,"abstract":"<p>A combined deep machine learning (DML) and collocation based approach to solve the partial differential equations using artificial neural networks is proposed. The developed method is applied to solve problems governed by the Sine–Gordon equation (SGE), the scalar wave equation and elasto-dynamics. Two methods are studied: one is a space-time formulation and the other is a semi-discrete method based on an implicit Runge–Kutta (RK) time integration. The methodology is implemented using the Tensorflow framework and it is tested on several numerical examples. Based on the results, the relative normalized error was observed to be less than 5% in all cases.</p>","PeriodicalId":12476,"journal":{"name":"Frontiers of Structural and Civil Engineering","volume":"6 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Structural and Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11709-024-1011-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

A combined deep machine learning (DML) and collocation based approach to solve the partial differential equations using artificial neural networks is proposed. The developed method is applied to solve problems governed by the Sine–Gordon equation (SGE), the scalar wave equation and elasto-dynamics. Two methods are studied: one is a space-time formulation and the other is a semi-discrete method based on an implicit Runge–Kutta (RK) time integration. The methodology is implemented using the Tensorflow framework and it is tested on several numerical examples. Based on the results, the relative normalized error was observed to be less than 5% in all cases.

基于人工神经网络的深度配位法求解瞬态线性和非线性偏微分方程
本文提出了一种基于深度机器学习(DML)和搭配的组合方法,利用人工神经网络求解偏微分方程。所开发的方法适用于解决正弦-戈登方程(SGE)、标量波方程和弹性力学问题。研究了两种方法:一种是时空公式,另一种是基于隐式 Runge-Kutta (RK) 时间积分的半离散方法。该方法使用 Tensorflow 框架实现,并在几个数值示例中进行了测试。结果表明,在所有情况下,相对归一化误差均小于 5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.20
自引率
3.30%
发文量
734
期刊介绍: Frontiers of Structural and Civil Engineering is an international journal that publishes original research papers, review articles and case studies related to civil and structural engineering. Topics include but are not limited to the latest developments in building and bridge structures, geotechnical engineering, hydraulic engineering, coastal engineering, and transport engineering. Case studies that demonstrate the successful applications of cutting-edge research technologies are welcome. The journal also promotes and publishes interdisciplinary research and applications connecting civil engineering and other disciplines, such as bio-, info-, nano- and social sciences and technology. Manuscripts submitted for publication will be subject to a stringent peer review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信