{"title":"An artificial neural network based deep collocation method for the solution of transient linear and nonlinear partial differential equations","authors":"Abhishek Mishra, Cosmin Anitescu, Pattabhi Ramaiah Budarapu, Sundararajan Natarajan, Pandu Ranga Vundavilli, Timon Rabczuk","doi":"10.1007/s11709-024-1011-4","DOIUrl":null,"url":null,"abstract":"<p>A combined deep machine learning (DML) and collocation based approach to solve the partial differential equations using artificial neural networks is proposed. The developed method is applied to solve problems governed by the Sine–Gordon equation (SGE), the scalar wave equation and elasto-dynamics. Two methods are studied: one is a space-time formulation and the other is a semi-discrete method based on an implicit Runge–Kutta (RK) time integration. The methodology is implemented using the Tensorflow framework and it is tested on several numerical examples. Based on the results, the relative normalized error was observed to be less than 5% in all cases.</p>","PeriodicalId":12476,"journal":{"name":"Frontiers of Structural and Civil Engineering","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Structural and Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11709-024-1011-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
A combined deep machine learning (DML) and collocation based approach to solve the partial differential equations using artificial neural networks is proposed. The developed method is applied to solve problems governed by the Sine–Gordon equation (SGE), the scalar wave equation and elasto-dynamics. Two methods are studied: one is a space-time formulation and the other is a semi-discrete method based on an implicit Runge–Kutta (RK) time integration. The methodology is implemented using the Tensorflow framework and it is tested on several numerical examples. Based on the results, the relative normalized error was observed to be less than 5% in all cases.
期刊介绍:
Frontiers of Structural and Civil Engineering is an international journal that publishes original research papers, review articles and case studies related to civil and structural engineering. Topics include but are not limited to the latest developments in building and bridge structures, geotechnical engineering, hydraulic engineering, coastal engineering, and transport engineering. Case studies that demonstrate the successful applications of cutting-edge research technologies are welcome. The journal also promotes and publishes interdisciplinary research and applications connecting civil engineering and other disciplines, such as bio-, info-, nano- and social sciences and technology. Manuscripts submitted for publication will be subject to a stringent peer review.