Rank-$N$ Dimer Models on Surfaces

Sri Tata
{"title":"Rank-$N$ Dimer Models on Surfaces","authors":"Sri Tata","doi":"arxiv-2408.12066","DOIUrl":null,"url":null,"abstract":"The web trace theorem of Douglas, Kenyon, Shi expands the twisted Kasteleyn\ndeterminant in terms of traces of webs. We generalize this theorem to higher\ngenus surfaces and expand the twisted Kasteleyn matrices corresponding to spin\nstructures on the surface, analogously to the rank-1 case of Cimasoni,\nReshetikhin. In the process of the proof, we give an alternate geometric\nderivation of the planar web trace theorem, relying on the spin geometry of\nembedded loops and a `racetrack construction' used to immerse loops in the\nblowup graph on the surface.","PeriodicalId":501271,"journal":{"name":"arXiv - MATH - Geometric Topology","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.12066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The web trace theorem of Douglas, Kenyon, Shi expands the twisted Kasteleyn determinant in terms of traces of webs. We generalize this theorem to higher genus surfaces and expand the twisted Kasteleyn matrices corresponding to spin structures on the surface, analogously to the rank-1 case of Cimasoni, Reshetikhin. In the process of the proof, we give an alternate geometric derivation of the planar web trace theorem, relying on the spin geometry of embedded loops and a `racetrack construction' used to immerse loops in the blowup graph on the surface.
表面上的 Rank-$N$ 二聚体模型
道格拉斯(Douglas)、凯尼恩(Kenyon)和施(Shi)的网迹定理用网迹展开了扭曲卡斯特林判定式。我们将这一定理推广到高根曲面,并展开曲面上自旋结构对应的扭曲卡斯特林矩阵,类似于西马索尼、雷舍蒂欣的秩-1情况。在证明过程中,我们给出了平面网迹定理的另一种几何衍生,它依赖于内嵌循环的自旋几何和一种 "racetrack 构造",用于将循环浸入曲面上的炸裂图中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信