Virtual Braids and Cluster Algebras

Andrey Egorov
{"title":"Virtual Braids and Cluster Algebras","authors":"Andrey Egorov","doi":"arxiv-2408.12684","DOIUrl":null,"url":null,"abstract":"In 2015 Hikami and Inoue constructed a representation of the braid group in\nterms of cluster algebra associated with the decomposition of the complement of\nthe corresponding knot into ideal hyperbolic tetrahedra. This representation\nleads to the calculation of the hyperbolic volume of the complement of the knot\nthat is the closure of the corresponding braid. In this paper, based on the\nHikami-Inoue representation discussed above, we construct a representation for\nthe virtual braid group. We show that the so-called \"forbidden relations\" do\nnot hold in the image of the resulting representation. In addition, based on\nthe developed method, we construct representations for the flat braid group and\nthe flat virtual braid group.","PeriodicalId":501271,"journal":{"name":"arXiv - MATH - Geometric Topology","volume":"80 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.12684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In 2015 Hikami and Inoue constructed a representation of the braid group in terms of cluster algebra associated with the decomposition of the complement of the corresponding knot into ideal hyperbolic tetrahedra. This representation leads to the calculation of the hyperbolic volume of the complement of the knot that is the closure of the corresponding braid. In this paper, based on the Hikami-Inoue representation discussed above, we construct a representation for the virtual braid group. We show that the so-called "forbidden relations" do not hold in the image of the resulting representation. In addition, based on the developed method, we construct representations for the flat braid group and the flat virtual braid group.
虚拟辫和簇代数
2015 年,Hikami 和 Inoue 构建了辫状组在簇代数方面的表示,该表示与将相应结的补码分解为理想双曲四面体相关。通过这一表示,可以计算作为相应辫子闭合的结的补集的双曲体积。在本文中,我们基于上文讨论的光井上表示,构建了虚辫群的表示。我们证明了所谓的 "禁止关系 "在所得到的表示的图像中并不成立。此外,基于所开发的方法,我们还构造了平面辫状群和平面虚辫状群的表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信