Embedding periodic maps of surfaces into those of spheres with minimal dimensions

Chao Wang, Shicheng Wang, Zhongzi Wang
{"title":"Embedding periodic maps of surfaces into those of spheres with minimal dimensions","authors":"Chao Wang, Shicheng Wang, Zhongzi Wang","doi":"arxiv-2408.13749","DOIUrl":null,"url":null,"abstract":"It is known that any periodic map of order $n$ on a closed oriented surface\nof genus $g$ can be equivariantly embedded into $S^m$ for some $m$. In the\norientable and smooth category, we determine the smallest possible $m$ when\n$n\\geq 3g$. We show that for each integer $k>1$ there exist infinitely many\nperiodic maps such that the smallest possible $m$ is equal to $k$.","PeriodicalId":501271,"journal":{"name":"arXiv - MATH - Geometric Topology","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.13749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

It is known that any periodic map of order $n$ on a closed oriented surface of genus $g$ can be equivariantly embedded into $S^m$ for some $m$. In the orientable and smooth category, we determine the smallest possible $m$ when $n\geq 3g$. We show that for each integer $k>1$ there exist infinitely many periodic maps such that the smallest possible $m$ is equal to $k$.
以最小维度将曲面的周期映射嵌入到球面的周期映射中
众所周知,在属$g$的封闭定向面上,任何阶数为$n$的周期映射都可以等价嵌入到某个$m$的$S^m$中。在可定向光滑类别中,我们确定了当 $n\geq 3g$ 时可能的最小 $m$。我们证明了对于每个整数 $k>1$ 都存在无限多的周期映射,使得最小可能的 $m$ 等于 $k$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信