The real Mordell-Weil group of rational elliptic surfaces and real lines on del Pezzo surfaces of degree $K^2=1$

Sergey Finashin, Viatcheslav Kharlamov
{"title":"The real Mordell-Weil group of rational elliptic surfaces and real lines on del Pezzo surfaces of degree $K^2=1$","authors":"Sergey Finashin, Viatcheslav Kharlamov","doi":"arxiv-2409.01202","DOIUrl":null,"url":null,"abstract":"We undertake a study of topological properties of the real Mordell-Weil group\n$\\operatorname{MW}_{\\mathbb R}$ of real rational elliptic surfaces $X$ which we\naccompany by a related study of real lines on $X$ and on the \"subordinate\" del\nPezzo surfaces $Y$ of degree 1. We give an explicit description of isotopy\ntypes of real lines on $Y_{\\mathbb R}$ and an explicit presentation of\n$\\operatorname{MW}_{\\mathbb R}$ in the mapping class group\n$\\operatorname{Mod}(X_{\\mathbb R})$. Combining these results we establish an\nexplicit formula for the action of $\\operatorname{MW}_{\\mathbb R}$ in\n$H_1(X_{\\mathbb R})$.","PeriodicalId":501271,"journal":{"name":"arXiv - MATH - Geometric Topology","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We undertake a study of topological properties of the real Mordell-Weil group $\operatorname{MW}_{\mathbb R}$ of real rational elliptic surfaces $X$ which we accompany by a related study of real lines on $X$ and on the "subordinate" del Pezzo surfaces $Y$ of degree 1. We give an explicit description of isotopy types of real lines on $Y_{\mathbb R}$ and an explicit presentation of $\operatorname{MW}_{\mathbb R}$ in the mapping class group $\operatorname{Mod}(X_{\mathbb R})$. Combining these results we establish an explicit formula for the action of $\operatorname{MW}_{\mathbb R}$ in $H_1(X_{\mathbb R})$.
有理椭圆曲面的实莫德尔-韦尔群和阶为 $K^2=1$ 的德尔佩佐曲面上的实线
我们研究了实有理椭圆曲面 $X$ 的实莫德尔-韦尔群(real Mordell-Weil group)的拓扑性质,并通过对 $X$ 上的实线和 "从属 "阶数为 1 的 delPezzo 曲面 $Y$ 上的实线进行了相关研究。我们给出了$Y_{\mathbb R}$上实线的同分类型的明确描述,以及$operatorname{MW}_\{mathbb R}$在映射类群$operatorname{Mod}(X_{\mathbb R})$中的明确呈现。结合这些结果,我们建立了$H_1(X_{\mathbb R})$中$\operatorname{MW}_{\mathbb R}$作用的显式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信