Computing Finite Type Invariants Efficiently

Dror Bar-Natan, Itai Bar-Natan, Iva Halacheva, Nancy Scherich
{"title":"Computing Finite Type Invariants Efficiently","authors":"Dror Bar-Natan, Itai Bar-Natan, Iva Halacheva, Nancy Scherich","doi":"arxiv-2408.15942","DOIUrl":null,"url":null,"abstract":"We describe an efficient algorithm to compute finite type invariants of type\n$k$ by first creating, for a given knot $K$ with $n$ crossings, a look-up table\nfor all subdiagrams of $K$ of size $\\lceil \\frac{k}{2}\\rceil$ indexed by dyadic\nintervals in $[0,2n-1]$. Using this algorithm, any such finite type invariant\ncan be computed on an $n$-crossing knot in time $\\sim n^{\\lceil\n\\frac{k}{2}\\rceil}$, a lot faster than the previously best published bound of\n$\\sim n^k$.","PeriodicalId":501271,"journal":{"name":"arXiv - MATH - Geometric Topology","volume":"75 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.15942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We describe an efficient algorithm to compute finite type invariants of type $k$ by first creating, for a given knot $K$ with $n$ crossings, a look-up table for all subdiagrams of $K$ of size $\lceil \frac{k}{2}\rceil$ indexed by dyadic intervals in $[0,2n-1]$. Using this algorithm, any such finite type invariant can be computed on an $n$-crossing knot in time $\sim n^{\lceil \frac{k}{2}\rceil}$, a lot faster than the previously best published bound of $\sim n^k$.
高效计算有限类型不变式
我们描述了一种计算$k$类型的有限类型不变式的高效算法,方法是首先为具有$n$交叉的给定结$K$创建一个查找表,以$[0,2n-1]$中的二元区间为索引,查找大小为$lceil (frac{k}{2}\rceil)$的$K$的所有子图。使用这种算法,可以在 $sim n^{lceil\frac{k}{2}\rceil}$ 的时间内对 $n$ 交叉结计算出任何这样的有限类型不变量,比之前公布的最佳边界 $sim n^k$ 快很多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信