{"title":"On a nonlinear general eigenvalue problem in Musielak–Orlicz spaces","authors":"Soufiane Kassimi, Hajar Sabiki, Hicham Moussa","doi":"10.1515/gmj-2024-2050","DOIUrl":null,"url":null,"abstract":"In this paper, we concern the existence result of the following general eigenvalue problem: <jats:disp-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>{</m:mo> <m:mtable columnspacing=\"0pt\" displaystyle=\"true\" rowspacing=\"0pt\"> <m:mtr> <m:mtd columnalign=\"right\"> <m:mrow> <m:mi mathvariant=\"script\">𝒜</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>u</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mtd> <m:mtd columnalign=\"left\"> <m:mrow> <m:mi/> <m:mo>=</m:mo> <m:mrow> <m:mi>λ</m:mi> <m:mo></m:mo> <m:mi mathvariant=\"script\">ℬ</m:mi> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>u</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:mtd> <m:mtd/> <m:mtd columnalign=\"right\"> <m:mrow> <m:mrow> <m:mtext>in </m:mtext> <m:mo></m:mo> <m:mi mathvariant=\"normal\">Ω</m:mi> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\"right\"> <m:mrow> <m:msup> <m:mi>D</m:mi> <m:mi>α</m:mi> </m:msup> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>u</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mtd> <m:mtd columnalign=\"left\"> <m:mrow> <m:mi/> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:mrow> </m:mtd> <m:mtd/> <m:mtd columnalign=\"right\"> <m:mrow> <m:mrow> <m:mtext>on </m:mtext> <m:mo></m:mo> <m:mrow> <m:mo>∂</m:mo> <m:mo></m:mo> <m:mi mathvariant=\"normal\">Ω</m:mi> </m:mrow> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:mtd> </m:mtr> </m:mtable> </m:mrow> </m:math> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2050_eq_0066.png\"/> <jats:tex-math>\\left\\{\\begin{aligned} \\displaystyle{}\\mathcal{A}(u)&\\displaystyle={\\lambda}% \\mathcal{B}(u)&&\\displaystyle\\phantom{}\\text{in }{\\Omega},\\\\ \\displaystyle D^{\\alpha}(u)&\\displaystyle=0&&\\displaystyle\\phantom{}\\text{on }% {\\partial\\Omega},\\end{aligned}\\right.</jats:tex-math> </jats:alternatives> </jats:disp-formula> in an arbitrary Musielak–Orlicz spaces, where <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"script\">𝒜</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2050_eq_0280.png\"/> <jats:tex-math>{\\mathcal{A}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"script\">ℬ</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2050_eq_0281.png\"/> <jats:tex-math>{\\mathcal{B}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> are quasilinear operators in divergence form of order <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mn>2</m:mn> <m:mo></m:mo> <m:mi>n</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2050_eq_0162.png\"/> <jats:tex-math>{2n}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mn>2</m:mn> <m:mo></m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>n</m:mi> <m:mo>-</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2050_eq_0160.png\"/> <jats:tex-math>{2(n-1)}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, respectively. The main assumptions in this case are that <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"script\">𝒜</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2050_eq_0280.png\"/> <jats:tex-math>{\\mathcal{A}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"script\">ℬ</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2050_eq_0281.png\"/> <jats:tex-math>{\\mathcal{B}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> are potential operators with <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"script\">𝒜</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2050_eq_0280.png\"/> <jats:tex-math>{\\mathcal{A}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> being elliptic and monotone. In this study, we intentionally avoid imposing constraints on the growth of a generalized <jats:italic>N</jats:italic>-function, including the <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi mathvariant=\"normal\">Δ</m:mi> <m:mn>2</m:mn> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2050_eq_0246.png\"/> <jats:tex-math>{\\Delta_{2}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-condition for both the generalized <jats:italic>N</jats:italic>-function and its conjugate. Consequently, this necessitates the formulation of the approximation theorem and the extensive utilization of modular convergence concepts.","PeriodicalId":55101,"journal":{"name":"Georgian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Georgian Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/gmj-2024-2050","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we concern the existence result of the following general eigenvalue problem: {𝒜(u)=λℬ(u)in Ω,Dα(u)=0on ∂Ω,\left\{\begin{aligned} \displaystyle{}\mathcal{A}(u)&\displaystyle={\lambda}% \mathcal{B}(u)&&\displaystyle\phantom{}\text{in }{\Omega},\\ \displaystyle D^{\alpha}(u)&\displaystyle=0&&\displaystyle\phantom{}\text{on }% {\partial\Omega},\end{aligned}\right. in an arbitrary Musielak–Orlicz spaces, where 𝒜{\mathcal{A}} and ℬ{\mathcal{B}} are quasilinear operators in divergence form of order 2n{2n} and 2(n-1){2(n-1)}, respectively. The main assumptions in this case are that 𝒜{\mathcal{A}} and ℬ{\mathcal{B}} are potential operators with 𝒜{\mathcal{A}} being elliptic and monotone. In this study, we intentionally avoid imposing constraints on the growth of a generalized N-function, including the Δ2{\Delta_{2}}-condition for both the generalized N-function and its conjugate. Consequently, this necessitates the formulation of the approximation theorem and the extensive utilization of modular convergence concepts.
期刊介绍:
The Georgian Mathematical Journal was founded by the Georgian National Academy of Sciences and A. Razmadze Mathematical Institute, and is jointly produced with De Gruyter. The concern of this international journal is the publication of research articles of best scientific standard in pure and applied mathematics. Special emphasis is put on the presentation of results obtained by Georgian mathematicians.