On a nonlinear general eigenvalue problem in Musielak–Orlicz spaces

IF 0.8 4区 数学 Q2 MATHEMATICS
Soufiane Kassimi, Hajar Sabiki, Hicham Moussa
{"title":"On a nonlinear general eigenvalue problem in Musielak–Orlicz spaces","authors":"Soufiane Kassimi, Hajar Sabiki, Hicham Moussa","doi":"10.1515/gmj-2024-2050","DOIUrl":null,"url":null,"abstract":"In this paper, we concern the existence result of the following general eigenvalue problem: <jats:disp-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>{</m:mo> <m:mtable columnspacing=\"0pt\" displaystyle=\"true\" rowspacing=\"0pt\"> <m:mtr> <m:mtd columnalign=\"right\"> <m:mrow> <m:mi mathvariant=\"script\">𝒜</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>u</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mtd> <m:mtd columnalign=\"left\"> <m:mrow> <m:mi/> <m:mo>=</m:mo> <m:mrow> <m:mi>λ</m:mi> <m:mo>⁢</m:mo> <m:mi mathvariant=\"script\">ℬ</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>u</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:mtd> <m:mtd/> <m:mtd columnalign=\"right\"> <m:mrow> <m:mrow> <m:mtext>in </m:mtext> <m:mo>⁢</m:mo> <m:mi mathvariant=\"normal\">Ω</m:mi> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\"right\"> <m:mrow> <m:msup> <m:mi>D</m:mi> <m:mi>α</m:mi> </m:msup> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mi>u</m:mi> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:mtd> <m:mtd columnalign=\"left\"> <m:mrow> <m:mi/> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:mrow> </m:mtd> <m:mtd/> <m:mtd columnalign=\"right\"> <m:mrow> <m:mrow> <m:mtext>on </m:mtext> <m:mo>⁢</m:mo> <m:mrow> <m:mo>∂</m:mo> <m:mo>⁡</m:mo> <m:mi mathvariant=\"normal\">Ω</m:mi> </m:mrow> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:mtd> </m:mtr> </m:mtable> </m:mrow> </m:math> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2050_eq_0066.png\"/> <jats:tex-math>\\left\\{\\begin{aligned} \\displaystyle{}\\mathcal{A}(u)&amp;\\displaystyle={\\lambda}% \\mathcal{B}(u)&amp;&amp;\\displaystyle\\phantom{}\\text{in }{\\Omega},\\\\ \\displaystyle D^{\\alpha}(u)&amp;\\displaystyle=0&amp;&amp;\\displaystyle\\phantom{}\\text{on }% {\\partial\\Omega},\\end{aligned}\\right.</jats:tex-math> </jats:alternatives> </jats:disp-formula> in an arbitrary Musielak–Orlicz spaces, where <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"script\">𝒜</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2050_eq_0280.png\"/> <jats:tex-math>{\\mathcal{A}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"script\">ℬ</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2050_eq_0281.png\"/> <jats:tex-math>{\\mathcal{B}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> are quasilinear operators in divergence form of order <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mn>2</m:mn> <m:mo>⁢</m:mo> <m:mi>n</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2050_eq_0162.png\"/> <jats:tex-math>{2n}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mn>2</m:mn> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mi>n</m:mi> <m:mo>-</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2050_eq_0160.png\"/> <jats:tex-math>{2(n-1)}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, respectively. The main assumptions in this case are that <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"script\">𝒜</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2050_eq_0280.png\"/> <jats:tex-math>{\\mathcal{A}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"script\">ℬ</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2050_eq_0281.png\"/> <jats:tex-math>{\\mathcal{B}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> are potential operators with <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"script\">𝒜</m:mi> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2050_eq_0280.png\"/> <jats:tex-math>{\\mathcal{A}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> being elliptic and monotone. In this study, we intentionally avoid imposing constraints on the growth of a generalized <jats:italic>N</jats:italic>-function, including the <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mi mathvariant=\"normal\">Δ</m:mi> <m:mn>2</m:mn> </m:msub> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_gmj-2024-2050_eq_0246.png\"/> <jats:tex-math>{\\Delta_{2}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-condition for both the generalized <jats:italic>N</jats:italic>-function and its conjugate. Consequently, this necessitates the formulation of the approximation theorem and the extensive utilization of modular convergence concepts.","PeriodicalId":55101,"journal":{"name":"Georgian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Georgian Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/gmj-2024-2050","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we concern the existence result of the following general eigenvalue problem: { 𝒜 ( u ) = λ ( u ) in Ω , D α ( u ) = 0 on Ω , \left\{\begin{aligned} \displaystyle{}\mathcal{A}(u)&\displaystyle={\lambda}% \mathcal{B}(u)&&\displaystyle\phantom{}\text{in }{\Omega},\\ \displaystyle D^{\alpha}(u)&\displaystyle=0&&\displaystyle\phantom{}\text{on }% {\partial\Omega},\end{aligned}\right. in an arbitrary Musielak–Orlicz spaces, where 𝒜 {\mathcal{A}} and {\mathcal{B}} are quasilinear operators in divergence form of order 2 n {2n} and 2 ( n - 1 ) {2(n-1)} , respectively. The main assumptions in this case are that 𝒜 {\mathcal{A}} and {\mathcal{B}} are potential operators with 𝒜 {\mathcal{A}} being elliptic and monotone. In this study, we intentionally avoid imposing constraints on the growth of a generalized N-function, including the Δ 2 {\Delta_{2}} -condition for both the generalized N-function and its conjugate. Consequently, this necessitates the formulation of the approximation theorem and the extensive utilization of modular convergence concepts.
关于 Musielak-Orlicz 空间中的非线性一般特征值问题
在本文中,我们关注以下一般特征值问题的存在性结果: { 𝒜 ( u ) = λ ℬ ( u ) in Ω , D α ( u ) = 0 on ∂ Ω , \left\{begin{aligned}\displaystyle={lambda}% \mathcal{B}(u)&&\displaystyle\phantom{}\text{in }{\Omega},\\displaystyle D^{\alpha}(u)&;\displaystyle=0&&\displaystyle\phantom{}\text{on }% {\partial\Omega},end{aligned}\right. 其中𝒜 {\mathcal{A}} 和 ℬ {\mathcal{B}} 分别是阶数为 2 n {2n} 和 2 ( n - 1 ) {2(n-1)} 的发散形式的准线性算子。这种情况下的主要假设是𝒜 {\mathcal{A}} 和 ℬ {\mathcal{B}} 是势算子,其中𝒜 {\mathcal{A}} 是椭圆的、单调的。在本研究中,我们有意避免对广义 N 函数的增长施加约束,包括 Δ 2 {\Delta_{2}} 和 Δ 2 {\Delta_{2}} 的条件。 -条件。因此,这就需要提出近似定理并广泛使用模块收敛概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
76
审稿时长
>12 weeks
期刊介绍: The Georgian Mathematical Journal was founded by the Georgian National Academy of Sciences and A. Razmadze Mathematical Institute, and is jointly produced with De Gruyter. The concern of this international journal is the publication of research articles of best scientific standard in pure and applied mathematics. Special emphasis is put on the presentation of results obtained by Georgian mathematicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信